Imaging the mantle beneath Iceland using integrated seismological techniques

[1] Using a combination of body wave and surface wave data sets to reveal the mantle plume and plume head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth. Data comes primarily from the PASSCAL-HOTSPOT deployment of 30 broadband instruments over a peri...

Full description

Bibliographic Details
Main Authors: Richard M. Allen, Guust Nolet, W. Jason Morgan, Kristín Vogfjörd, Bergur H. Bergsson, Pálmi Erlendsson, G. R. Foulger, Steinunn Jakobsdóttir, Bruce R. Julian, Matt Pritchard, Sturla Ragnarsson, Ragnar Stefánsson
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.411.8645
http://seismo.berkeley.edu/~rallen/pub/2001iceman/Allenetal2002IcelandMantleJGR.pdf
Description
Summary:[1] Using a combination of body wave and surface wave data sets to reveal the mantle plume and plume head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth. Data comes primarily from the PASSCAL-HOTSPOT deployment of 30 broadband instruments over a period of 2 years, and is supplemented by data from the SIL and ICEMELT networks. Three sets of relative teleseismic body wave arrival times are generated through cross correlation: S and SKS arrivals at 0.03–0.1 Hz, and P and PKIKP arrivals at 0.03–0.1 and 0.8–2.0 Hz. Prior to inversion the crustal portion of the travel time anomalies is removed using the crustal model ICECRTb. This step has a significant effect on the mantle velocity variations imaged down to a depth of 250 km. Inversion of relative arrival times only provides information on lateral velocity variations. Surface waves are therefore used to provide absolute velocity information for the uppermost mantle beneath Iceland. The average wave number for the Love wave fundamental mode at 0.020 and 0.024 Hz is measured and used to invert for the average S velocity. Combination of the body wave and surface wave information reveals a predominantly horizontal low-velocity anomaly extending from the Moho down to 250