North Atlantic modeling of low-frequency variability in mode water formation

The generation of interannual and near-decadal variability in the formation of mode waters in the western North Atlantic is investigated in the realistic framework of an isopycnic coordinate ocean model forced with atmospheric data from 1946 to 1988. At Bermuda, the model reproduces quite well the o...

Full description

Bibliographic Details
Main Authors: Afonso M. Paiva, Eric P. Chassignet
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2001
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.3034
Description
Summary:The generation of interannual and near-decadal variability in the formation of mode waters in the western North Atlantic is investigated in the realistic framework of an isopycnic coordinate ocean model forced with atmospheric data from 1946 to 1988. At Bermuda, the model reproduces quite well the observed potential vorticity and isopycnal depth anomalies associated with the subtropical mode water (STMW). Heat storage and preconditioning of the convective activity are found to be the important factors for the generation of STMW variability, with persistence of cold (warm) conditions, associated with anomalous heat loss (gain) over the western subtropics, being more significant for the generation of the simulated variability than are strong anomalous events in isolated years. In the Labrador Sea, the model captures the phase and order of magnitude of the observed near-decadal variability in the convective activity, if not its maximum amplitude. The simulated potential vorticity anomali.