896 JOURNAL OF CLIMATE VOLUME 13 Variations in Surface Air Temperature Observations in the Arctic, 1979–97

The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979–97 are analyzed. Although the basic statistics agree with what has been published in various climatologies, the seasonal correlation length...

Full description

Bibliographic Details
Main Authors: Ignatius G. Rigor, Roger L. Colony, Seelye Martin
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1998
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.1697
http://iabp.apl.washington.edu/AirT/RigorEtal-SAT.pdf
Description
Summary:The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979–97 are analyzed. Although the basic statistics agree with what has been published in various climatologies, the seasonal correlation length scales between the observations are shorter than the annual correlation length scales, especially during summer when the inhomogeneity between the ice-covered ocean and the land is most apparent. During autumn, winter, and spring, the monthly mean correlation length scales are approximately constant at about 1000 km; during summer, the length scales are much shorter, that is, as low as 300 km. These revised scales are particularly important in the optimal interpolation of data on surface air temperature (SAT) and are used in the analysis of an improved SAT dataset called International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES). Compared to observations from land stations and the Russian North Pole drift stations, the IABP/POLES dataset has higher correlations and lower rms errors than previous SAT fields and provides better temperature estimates, especially during summer in the marginal ice zones. In addition, the revised correlation length scales allow data taken at interior land stations to be included in the optimal interpretation analysis without introducing land biases to grid points over the ocean. The new analysis provides 12-h fields of air temperatures on a 100-km rectangular grid