Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery

This paper compares the discrimination ability of two texture analysis methods: Markov random fields (MRFs) and gray-level cooccurrence probabilities (GLCPs). There exists limited published research comparing different texture methods, especially with regard to segmenting remotely sensed imagery. Th...

Full description

Bibliographic Details
Main Authors: David A. Clausi, Bing Yue
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.6693
http://www.eng.uwaterloo.ca/~dclausi/Papers/Published 2004/Clausi and Yue - MRF and GLCP - IEEE GRS 2004.pdf
Description
Summary:This paper compares the discrimination ability of two texture analysis methods: Markov random fields (MRFs) and gray-level cooccurrence probabilities (GLCPs). There exists limited published research comparing different texture methods, especially with regard to segmenting remotely sensed imagery. The role of window size in texture feature consistency and separability as well as the role in handling of multiple textures within a window are investigated. Necessary testing is performed on samples of synthetic (MRF generated), Brodatz, and synthetic aperture radar (SAR) sea ice imagery. GLCPs are demonstrated to have improved discrimination ability relative to MRFs with decreasing window size, which is important when performing image segmentation. On the other hand, GLCPs are more sensitive to texture boundary confusion than MRFs given their respective segmentation procedures.