A mechanism for abrupt climate change associated with tropical Pacific SSTs

ABSTRACT The tropical Pacific's response to transiently increasing atmospheric CO 2 is investigated using three ensemble members from a numerically efficient, coupled atmosphere-ocean GCM. The model is forced with a 1% yr Ϫ1 increase in CO 2 for 110 yr, when the concentration reaches 3 times th...

Full description

Bibliographic Details
Main Authors: Steve Vavrus, Michael Notaro, Zhengyu Liu
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1073.5736
http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.1073.5736
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.1073.5736 2023-05-15T13:15:06+02:00 A mechanism for abrupt climate change associated with tropical Pacific SSTs Steve Vavrus Michael Notaro Zhengyu Liu The Pennsylvania State University CiteSeerX Archives 2006 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1073.5736 http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1073.5736 http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf text 2006 ftciteseerx 2020-04-26T00:26:11Z ABSTRACT The tropical Pacific's response to transiently increasing atmospheric CO 2 is investigated using three ensemble members from a numerically efficient, coupled atmosphere-ocean GCM. The model is forced with a 1% yr Ϫ1 increase in CO 2 for 110 yr, when the concentration reaches 3 times the modern concentration. The transient greenhouse forcing causes a regionally enhanced warming of the equatorial Pacific, particularly in the far west. This accentuated equatorial heating, which is slow to arise but emerges abruptly during the last half of the simulations, results from both atmospheric and oceanic processes. The key atmospheric mechanism is a rapid local increase in the super-greenhouse effect, whose emergence coincides with enhanced convection and greater high cloud amount once the SST exceeds an apparent threshold around 27°C. The primary oceanic feedback is greater Ekman heat convergence near the equator, due to an anomalous near-equatorial westerly wind stress created by increased rising (sinking) air to the east (west) of Indonesia. The potential dependence of these results on the specific model used is discussed. The suddenness and far-ranging impact of the enhanced, near-equatorial warming during these simulations suggests a mechanism by which abrupt climate changes may be triggered within the Tropics. The extratropical atmospheric response in the Pacific resembles anomalies during present-day El Niño events, while the timing and rapidity of the midlatitude changes are similar to those in the Tropics. In particular, a strengthening of the Pacific jet stream and a spinup of the wintertime Aleutian low seem to be forced by the changes in the tropical Pacific, much as they are in the modern climate. Text aleutian low Unknown Pacific
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description ABSTRACT The tropical Pacific's response to transiently increasing atmospheric CO 2 is investigated using three ensemble members from a numerically efficient, coupled atmosphere-ocean GCM. The model is forced with a 1% yr Ϫ1 increase in CO 2 for 110 yr, when the concentration reaches 3 times the modern concentration. The transient greenhouse forcing causes a regionally enhanced warming of the equatorial Pacific, particularly in the far west. This accentuated equatorial heating, which is slow to arise but emerges abruptly during the last half of the simulations, results from both atmospheric and oceanic processes. The key atmospheric mechanism is a rapid local increase in the super-greenhouse effect, whose emergence coincides with enhanced convection and greater high cloud amount once the SST exceeds an apparent threshold around 27°C. The primary oceanic feedback is greater Ekman heat convergence near the equator, due to an anomalous near-equatorial westerly wind stress created by increased rising (sinking) air to the east (west) of Indonesia. The potential dependence of these results on the specific model used is discussed. The suddenness and far-ranging impact of the enhanced, near-equatorial warming during these simulations suggests a mechanism by which abrupt climate changes may be triggered within the Tropics. The extratropical atmospheric response in the Pacific resembles anomalies during present-day El Niño events, while the timing and rapidity of the midlatitude changes are similar to those in the Tropics. In particular, a strengthening of the Pacific jet stream and a spinup of the wintertime Aleutian low seem to be forced by the changes in the tropical Pacific, much as they are in the modern climate.
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author Steve Vavrus
Michael Notaro
Zhengyu Liu
spellingShingle Steve Vavrus
Michael Notaro
Zhengyu Liu
A mechanism for abrupt climate change associated with tropical Pacific SSTs
author_facet Steve Vavrus
Michael Notaro
Zhengyu Liu
author_sort Steve Vavrus
title A mechanism for abrupt climate change associated with tropical Pacific SSTs
title_short A mechanism for abrupt climate change associated with tropical Pacific SSTs
title_full A mechanism for abrupt climate change associated with tropical Pacific SSTs
title_fullStr A mechanism for abrupt climate change associated with tropical Pacific SSTs
title_full_unstemmed A mechanism for abrupt climate change associated with tropical Pacific SSTs
title_sort mechanism for abrupt climate change associated with tropical pacific ssts
publishDate 2006
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1073.5736
http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf
geographic Pacific
geographic_facet Pacific
genre aleutian low
genre_facet aleutian low
op_source http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1073.5736
http://aos.wisc.edu/%7Ezliu/publications/06_JC_Vavrus_AbrupSST.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766266922702209024