Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.

[1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO 2 emission, stabilization of atmospheric CO 2 content, and stabilization of atmospheric CO 2 achieved in total or in part by injection of CO 2 to the deep ocean interior. Our goal is to...

Full description

Bibliographic Details
Main Authors: Ken Caldeira, Michael E Wickett
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.8660
http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.1068.8660
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.1068.8660 2023-05-15T18:25:54+02:00 Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Ken Caldeira Michael E Wickett The Pennsylvania State University CiteSeerX Archives 2005 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.8660 http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.8660 http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf text 2005 ftciteseerx 2020-04-26T00:16:36Z [1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO 2 emission, stabilization of atmospheric CO 2 content, and stabilization of atmospheric CO 2 achieved in total or in part by injection of CO 2 to the deep ocean interior. Our goal is to provide first-order results from various CO 2 pathways, allowing correspondence with studies of marine biological effects of added CO 2 . Parts of the Southern Ocean become undersaturated with respect to aragonite under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A1, A2, B1, and B2 emission pathways and the WRE pathways that stabilize CO 2 at 650 ppm or above. Cumulative atmospheric emission of 5000 Pg C produces aragonite undersaturation in most of the surface ocean; 10,000 Pg C also produces calcite undersaturation in most of the surface ocean. Stabilization of atmospheric CO 2 at 450 ppm produces both calcite and aragonite undersaturation in most of the deep ocean. The simulated SRES pathways produce global surface pH reductions of $0.3-0.5 units by year 2100. Approximately this same reduction is produced by WRE650 and WRE1000 stabilization scenarios and by the 1250 Pg C emission scenario by year 2300. Atmospheric emissions of 5000 Pg C and 20,000 Pg C produce global surface pH reductions of 0.8 and 1.4 units, respectively, by year 2300. Simulations of deep ocean CO 2 injection as an alternative to atmospheric release show greater chemical impact on the deep ocean as the price for having less impact on the surface ocean and climate. Changes in ocean chemistry of the magnitude shown are likely to be biologically significant. Citation: Caldeira, K., and M. E. Wickett (2005), Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean Text Southern Ocean Unknown Southern Ocean
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description [1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO 2 emission, stabilization of atmospheric CO 2 content, and stabilization of atmospheric CO 2 achieved in total or in part by injection of CO 2 to the deep ocean interior. Our goal is to provide first-order results from various CO 2 pathways, allowing correspondence with studies of marine biological effects of added CO 2 . Parts of the Southern Ocean become undersaturated with respect to aragonite under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A1, A2, B1, and B2 emission pathways and the WRE pathways that stabilize CO 2 at 650 ppm or above. Cumulative atmospheric emission of 5000 Pg C produces aragonite undersaturation in most of the surface ocean; 10,000 Pg C also produces calcite undersaturation in most of the surface ocean. Stabilization of atmospheric CO 2 at 450 ppm produces both calcite and aragonite undersaturation in most of the deep ocean. The simulated SRES pathways produce global surface pH reductions of $0.3-0.5 units by year 2100. Approximately this same reduction is produced by WRE650 and WRE1000 stabilization scenarios and by the 1250 Pg C emission scenario by year 2300. Atmospheric emissions of 5000 Pg C and 20,000 Pg C produce global surface pH reductions of 0.8 and 1.4 units, respectively, by year 2300. Simulations of deep ocean CO 2 injection as an alternative to atmospheric release show greater chemical impact on the deep ocean as the price for having less impact on the surface ocean and climate. Changes in ocean chemistry of the magnitude shown are likely to be biologically significant. Citation: Caldeira, K., and M. E. Wickett (2005), Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author Ken Caldeira
Michael E Wickett
spellingShingle Ken Caldeira
Michael E Wickett
Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
author_facet Ken Caldeira
Michael E Wickett
author_sort Ken Caldeira
title Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
title_short Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
title_full Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
title_fullStr Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
title_full_unstemmed Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
title_sort ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.
publishDate 2005
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.8660
http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.8660
http://shadow.eas.gatech.edu/%7Ekcobb/ocean_acid/Caldeira%20and%20Wickett%202005.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766207620977262592