R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS

Abstract The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO 2 , reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH dat...

Full description

Bibliographic Details
Main Authors: G E Hofmann, J E Smith, K S Johnson, U Send, L A Levin
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1054.3932
http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.1054.3932
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.1054.3932 2023-05-15T17:51:43+02:00 R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS G E Hofmann J E Smith K S Johnson U Send L A Levin The Pennsylvania State University CiteSeerX Archives application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1054.3932 http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1054.3932 http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf text ftciteseerx 2020-04-12T00:19:43Z Abstract The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO 2 , reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO 2 , often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO 2 . Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change. Text Ocean acidification Unknown
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description Abstract The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO 2 , reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO 2 , often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO 2 . Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author G E Hofmann
J E Smith
K S Johnson
U Send
L A Levin
spellingShingle G E Hofmann
J E Smith
K S Johnson
U Send
L A Levin
R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
author_facet G E Hofmann
J E Smith
K S Johnson
U Send
L A Levin
author_sort G E Hofmann
title R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
title_short R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
title_full R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
title_fullStr R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
title_full_unstemmed R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS
title_sort r.: high-frequency dynamics of ocean ph: a multi-ecosystem comparison, plos
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1054.3932
http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf
genre Ocean acidification
genre_facet Ocean acidification
op_source http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1054.3932
http://www.centerforoceansolutions.org/sites/default/files/publications/Micheli-PLoS1.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766158949327831040