Flood monitoring over the Mackenzie River Basin using passive microwave data.

Abstract Flooding over the Mackenzie River Basin, which is situated in northwestern Canada, is a complex and rapid process. This process is mainly controlled by the occurrence of ice jams. Flood forecasting is of very important in mitigating social and economic damage. This study investigates the po...

Full description

Bibliographic Details
Main Authors: Marouane Temimi, Robert Leconte, Francois Brissette, Naira Chaouch
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.7118
http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.1049.7118
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.1049.7118 2023-05-15T17:09:39+02:00 Flood monitoring over the Mackenzie River Basin using passive microwave data. Marouane Temimi Robert Leconte Francois Brissette Naira Chaouch The Pennsylvania State University CiteSeerX Archives 2005 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.7118 http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.7118 http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf text 2005 ftciteseerx 2020-04-05T00:25:32Z Abstract Flooding over the Mackenzie River Basin, which is situated in northwestern Canada, is a complex and rapid process. This process is mainly controlled by the occurrence of ice jams. Flood forecasting is of very important in mitigating social and economic damage. This study investigates the potential of a rating curve model for flood forecasting. The proposed approach is based on the use of a Water Surface Fraction derived from SSM/I passive microwave images and discharge observations. The rating curve model is based on an existing correlation between flooded areas and measured discharge. However, a time lag can be observed between these two variables. Thus, the rating curve model has been modified by the introduction of a lag term that could vary depending on the flooding intensity and the features of the basin. Hence, the lag term is computed dynamically using a cross-correlation function between Water Surface Fraction values which are derived from SSM/I observations and the discharge vectors. The rating curve model is based on two empirical parameters that depend on the site features, which vary in both space and time. To overcome this dependency, the rating curve model was linked to a Kalman filter in order to dynamically estimate the empirical parameters according to the forecasting errors encountered at each time step. With the Kalman filter, the dynamic rating curve model continuously readjusts its parameters to satisfy the non-stationary behavior of hydrological processes. The model is thus sufficiently flexible and adapted to various conditions. Simulations were carried out over the Mackenzie River Basin (1.8 million km 2 ) during the summers of 1998 and 1999. NOAA-AVHRR images were used to validate the forecast WSF values. The predicted flooded areas agree well with those derived from the NOAA-AVHRR images. Further simulations were carried out from 1992 to 2000 using the rating curve model to predict discharge at a downstream location. Even though an interannual variability of the water surface ... Text Mackenzie river Unknown Canada Mackenzie River
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description Abstract Flooding over the Mackenzie River Basin, which is situated in northwestern Canada, is a complex and rapid process. This process is mainly controlled by the occurrence of ice jams. Flood forecasting is of very important in mitigating social and economic damage. This study investigates the potential of a rating curve model for flood forecasting. The proposed approach is based on the use of a Water Surface Fraction derived from SSM/I passive microwave images and discharge observations. The rating curve model is based on an existing correlation between flooded areas and measured discharge. However, a time lag can be observed between these two variables. Thus, the rating curve model has been modified by the introduction of a lag term that could vary depending on the flooding intensity and the features of the basin. Hence, the lag term is computed dynamically using a cross-correlation function between Water Surface Fraction values which are derived from SSM/I observations and the discharge vectors. The rating curve model is based on two empirical parameters that depend on the site features, which vary in both space and time. To overcome this dependency, the rating curve model was linked to a Kalman filter in order to dynamically estimate the empirical parameters according to the forecasting errors encountered at each time step. With the Kalman filter, the dynamic rating curve model continuously readjusts its parameters to satisfy the non-stationary behavior of hydrological processes. The model is thus sufficiently flexible and adapted to various conditions. Simulations were carried out over the Mackenzie River Basin (1.8 million km 2 ) during the summers of 1998 and 1999. NOAA-AVHRR images were used to validate the forecast WSF values. The predicted flooded areas agree well with those derived from the NOAA-AVHRR images. Further simulations were carried out from 1992 to 2000 using the rating curve model to predict discharge at a downstream location. Even though an interannual variability of the water surface ...
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author Marouane Temimi
Robert Leconte
Francois Brissette
Naira Chaouch
spellingShingle Marouane Temimi
Robert Leconte
Francois Brissette
Naira Chaouch
Flood monitoring over the Mackenzie River Basin using passive microwave data.
author_facet Marouane Temimi
Robert Leconte
Francois Brissette
Naira Chaouch
author_sort Marouane Temimi
title Flood monitoring over the Mackenzie River Basin using passive microwave data.
title_short Flood monitoring over the Mackenzie River Basin using passive microwave data.
title_full Flood monitoring over the Mackenzie River Basin using passive microwave data.
title_fullStr Flood monitoring over the Mackenzie River Basin using passive microwave data.
title_full_unstemmed Flood monitoring over the Mackenzie River Basin using passive microwave data.
title_sort flood monitoring over the mackenzie river basin using passive microwave data.
publishDate 2005
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.7118
http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf
geographic Canada
Mackenzie River
geographic_facet Canada
Mackenzie River
genre Mackenzie river
genre_facet Mackenzie river
op_source http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.7118
http://www.etsmtl.ca/getattachment/Unites-de-recherche/Drame/Publications/Temimi_al05---RSE.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766065811602014208