A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula

Abstract Anthropogenic elevation of atmospheric pCO 2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO 3 2-] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO...

Full description

Bibliographic Details
Main Authors: J B Ries, • A L Cohen, • D C Mccorkle
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2010
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.577
http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.1049.577
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.1049.577 2023-05-15T17:50:19+02:00 A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula J B Ries • A L Cohen • D C Mccorkle The Pennsylvania State University CiteSeerX Archives 2010 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.577 http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.577 http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf text 2010 ftciteseerx 2020-04-05T00:25:17Z Abstract Anthropogenic elevation of atmospheric pCO 2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO 3 2-] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO 2 -induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO 2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO 2 , yielding average aragonite saturation states (X A ) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137 Ba/ 138 Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in X A from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under X A = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each X A discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO 3 , as the oceans acidify. The corals' nonlinear response to reduced X A and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO 3 2-] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to X A = 0.8 indicates that their response to future pCO 2 -induced ocean acidification could be both abrupt and severe once the critical X A is reached. Text Ocean acidification Unknown
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description Abstract Anthropogenic elevation of atmospheric pCO 2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO 3 2-] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO 2 -induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO 2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO 2 , yielding average aragonite saturation states (X A ) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137 Ba/ 138 Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in X A from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under X A = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each X A discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO 3 , as the oceans acidify. The corals' nonlinear response to reduced X A and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO 3 2-] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to X A = 0.8 indicates that their response to future pCO 2 -induced ocean acidification could be both abrupt and severe once the critical X A is reached.
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author J B Ries
• A L Cohen
• D C Mccorkle
spellingShingle J B Ries
• A L Cohen
• D C Mccorkle
A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
author_facet J B Ries
• A L Cohen
• D C Mccorkle
author_sort J B Ries
title A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
title_short A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
title_full A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
title_fullStr A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
title_full_unstemmed A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
title_sort nonlinear calcification response to co2-induced ocean acidification by the coral oculina arbuscula
publishDate 2010
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.577
http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf
genre Ocean acidification
genre_facet Ocean acidification
op_source http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1049.577
http://nuweb2.neu.edu/rieslab/Ries_et_al_10_Coral_Reefs_Nonlinear_Calcification_Response_Coral.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766157031142588416