Paleoenvironmental reconstruction of Challenger Mound initiation in the Porcupine Seabight, NE Atlantic , Wolf-Christian Dullo a and IODP Expedition 307 Scientific Party

The understanding of the paleoenvironment during initiation and early development of deep cold-water coral carbonate mounds in the NE Atlantic is currently a focus of international research. The Integrated Ocean Drilling Program (IODP) Expedition 307 drilled the 155 m high Challenger Mound in the Po...

Full description

Bibliographic Details
Main Authors: Jacek Raddatz, Andres Rüggeberg, Stephan Margreth
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1038.6589
http://www.vliz.be/imisdocs/publications/229990.pdf
Description
Summary:The understanding of the paleoenvironment during initiation and early development of deep cold-water coral carbonate mounds in the NE Atlantic is currently a focus of international research. The Integrated Ocean Drilling Program (IODP) Expedition 307 drilled the 155 m high Challenger Mound in the Porcupine Seabight (SW off Ireland) in order to investigate for the first time sediments from the base of a giant carbonate mound. In this study we focus in high resolution on 12 m of sediments from Site 1317 encompassing the mound base. The mound initiation and start-up phase coincide with the intensification of the Northern Hemisphere Glaciation (INHG) at around 2.7 Ma. Further carbonate mound development seems to be strongly dependent on rapid changes in paleoceanographic and climatic conditions at the Pliocene-Pleistocene boundary, especially characterized and caused by the interaction of intermediate water masses, the Mediterranean Outflow Water (MOW), the Eastern North Atlantic Water (ENAW) and the influence of Southern Component Water (SCW). This study is based on well-established proxies such as δ After these sluggish phases enhanced MOW flow dominated again and led to stronger current intensities and most probably sediment erosion on Challenger Mound. Erosion in combination with early diagenetic (oxidation) processes overprinted the sediment layers as indicated by dissolved coral skeletons, the increase in Ca-content and sediment density, minimum δ 13 C planktonic values, as well as the occurrence of gypsum and pyrite, implying a careful evaluation of original and overprinted geochemical signals. We conclude that the Challenger Mound development was already influenced by short-term variability of water masses from southern origin and possible erosional events comparable to the late Pleistocene setting.