Milankovitch theory and monsoon
The widely accepted "Milankovitch theory" explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half century, however, the theory has often come under scrutiny, especially regarding its "100-ka problem...
Published in: | The Innovation |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Report |
Language: | English |
Published: |
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
2022
|
Subjects: | |
Online Access: | http://ir.qdio.ac.cn/handle/337002/180249 https://doi.org/10.1016/j.xinn.2022.100338 |
id |
ftchinacasciocas:oai:ir.qdio.ac.cn:337002/180249 |
---|---|
record_format |
openpolar |
spelling |
ftchinacasciocas:oai:ir.qdio.ac.cn:337002/180249 2023-05-15T16:40:26+02:00 Milankovitch theory and monsoon Cheng, Hai Li, Hanying Sha, Lijuan Sinha, Ashish Shi, Zhengguo Yin, Qiuzhen Lu, Zhengyao Zhao, Debo Cai, Yanjun Hu, Yongyun Hao, Qingzhen Tian, Jun Kathayat, Gayatri Dong, Xiyu Zhao, Jingyao Zhang, Haiwei 2022-11-08 http://ir.qdio.ac.cn/handle/337002/180249 https://doi.org/10.1016/j.xinn.2022.100338 英语 eng ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD INNOVATION-THE EUROPEAN JOURNAL OF SOCIAL SCIENCE RESEARCH http://ir.qdio.ac.cn/handle/337002/180249 doi:10.1016/j.xinn.2022.100338 Sociology EAST-ASIAN SUMMER MERIDIONAL OVERTURNING CIRCULATION EARTHS ORBITAL PARAMETERS MAJOR GLACIATION CYCLES SOUTH CHINA SEA GLOBAL MONSOON ICE-SHEET ATLANTIC CIRCULATION SEASONAL TRANSITIONS PERSISTENT INFLUENCE 期刊论文 2022 ftchinacasciocas https://doi.org/10.1016/j.xinn.2022.100338 2023-01-16T16:14:20Z The widely accepted "Milankovitch theory" explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half century, however, the theory has often come under scrutiny, especially regarding its "100-ka problem." Another drawback, but the one that has received less attention, is the "monsoon problem," which pertains to the exclusion of monsoon dynamics in classic Milankovitch theory even though the monsoon prevails over the vast low-latitude (similar to 30 degrees N to similar to 30 degrees S) region that covers half of the Earth's surface and receives the bulk of solar radiation. In this review, we discuss the major issues with the current form of Milankovitch theory and the progress made at the research forefront. We suggest shifting the emphasis from the ultimate outcomes of the ice volume to the causal relationship between changes in northern high-latitude insolation and ice age termination events (or ice sheet melting rate) to help reconcile the classic "100-ka problem." We discuss the discrepancies associated with the characterization of monsoon dynamics, particularly the so-called "sea-land precession-phase paradox" and the "Chinese 100-ka problem." We suggest that many of these discrepancies are superficial and can be resolved by applying a holistic " monsoon system science" approach. Finally, we propose blending the conventional Kutzbach orbital monsoon hypothesis, which calls for summer insolation forcing of monsoons, with Milankovitch theory to formulate a combined "MilankovitchKutzbach hypothesis" that can potentially explain the dual nature of orbital hydrodynamics of the ice sheet and monsoon systems, as well as their interplays and respective relationships with the northern high-latitude insolation and inter-tropical insolation differential. Report Ice Sheet Institute of Oceanology, Chinese Academy of Sciences: IOCAS-IR The Innovation 3 6 100338 |
institution |
Open Polar |
collection |
Institute of Oceanology, Chinese Academy of Sciences: IOCAS-IR |
op_collection_id |
ftchinacasciocas |
language |
English |
topic |
Sociology EAST-ASIAN SUMMER MERIDIONAL OVERTURNING CIRCULATION EARTHS ORBITAL PARAMETERS MAJOR GLACIATION CYCLES SOUTH CHINA SEA GLOBAL MONSOON ICE-SHEET ATLANTIC CIRCULATION SEASONAL TRANSITIONS PERSISTENT INFLUENCE |
spellingShingle |
Sociology EAST-ASIAN SUMMER MERIDIONAL OVERTURNING CIRCULATION EARTHS ORBITAL PARAMETERS MAJOR GLACIATION CYCLES SOUTH CHINA SEA GLOBAL MONSOON ICE-SHEET ATLANTIC CIRCULATION SEASONAL TRANSITIONS PERSISTENT INFLUENCE Cheng, Hai Li, Hanying Sha, Lijuan Sinha, Ashish Shi, Zhengguo Yin, Qiuzhen Lu, Zhengyao Zhao, Debo Cai, Yanjun Hu, Yongyun Hao, Qingzhen Tian, Jun Kathayat, Gayatri Dong, Xiyu Zhao, Jingyao Zhang, Haiwei Milankovitch theory and monsoon |
topic_facet |
Sociology EAST-ASIAN SUMMER MERIDIONAL OVERTURNING CIRCULATION EARTHS ORBITAL PARAMETERS MAJOR GLACIATION CYCLES SOUTH CHINA SEA GLOBAL MONSOON ICE-SHEET ATLANTIC CIRCULATION SEASONAL TRANSITIONS PERSISTENT INFLUENCE |
description |
The widely accepted "Milankovitch theory" explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half century, however, the theory has often come under scrutiny, especially regarding its "100-ka problem." Another drawback, but the one that has received less attention, is the "monsoon problem," which pertains to the exclusion of monsoon dynamics in classic Milankovitch theory even though the monsoon prevails over the vast low-latitude (similar to 30 degrees N to similar to 30 degrees S) region that covers half of the Earth's surface and receives the bulk of solar radiation. In this review, we discuss the major issues with the current form of Milankovitch theory and the progress made at the research forefront. We suggest shifting the emphasis from the ultimate outcomes of the ice volume to the causal relationship between changes in northern high-latitude insolation and ice age termination events (or ice sheet melting rate) to help reconcile the classic "100-ka problem." We discuss the discrepancies associated with the characterization of monsoon dynamics, particularly the so-called "sea-land precession-phase paradox" and the "Chinese 100-ka problem." We suggest that many of these discrepancies are superficial and can be resolved by applying a holistic " monsoon system science" approach. Finally, we propose blending the conventional Kutzbach orbital monsoon hypothesis, which calls for summer insolation forcing of monsoons, with Milankovitch theory to formulate a combined "MilankovitchKutzbach hypothesis" that can potentially explain the dual nature of orbital hydrodynamics of the ice sheet and monsoon systems, as well as their interplays and respective relationships with the northern high-latitude insolation and inter-tropical insolation differential. |
format |
Report |
author |
Cheng, Hai Li, Hanying Sha, Lijuan Sinha, Ashish Shi, Zhengguo Yin, Qiuzhen Lu, Zhengyao Zhao, Debo Cai, Yanjun Hu, Yongyun Hao, Qingzhen Tian, Jun Kathayat, Gayatri Dong, Xiyu Zhao, Jingyao Zhang, Haiwei |
author_facet |
Cheng, Hai Li, Hanying Sha, Lijuan Sinha, Ashish Shi, Zhengguo Yin, Qiuzhen Lu, Zhengyao Zhao, Debo Cai, Yanjun Hu, Yongyun Hao, Qingzhen Tian, Jun Kathayat, Gayatri Dong, Xiyu Zhao, Jingyao Zhang, Haiwei |
author_sort |
Cheng, Hai |
title |
Milankovitch theory and monsoon |
title_short |
Milankovitch theory and monsoon |
title_full |
Milankovitch theory and monsoon |
title_fullStr |
Milankovitch theory and monsoon |
title_full_unstemmed |
Milankovitch theory and monsoon |
title_sort |
milankovitch theory and monsoon |
publisher |
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD |
publishDate |
2022 |
url |
http://ir.qdio.ac.cn/handle/337002/180249 https://doi.org/10.1016/j.xinn.2022.100338 |
genre |
Ice Sheet |
genre_facet |
Ice Sheet |
op_relation |
INNOVATION-THE EUROPEAN JOURNAL OF SOCIAL SCIENCE RESEARCH http://ir.qdio.ac.cn/handle/337002/180249 doi:10.1016/j.xinn.2022.100338 |
op_doi |
https://doi.org/10.1016/j.xinn.2022.100338 |
container_title |
The Innovation |
container_volume |
3 |
container_issue |
6 |
container_start_page |
100338 |
_version_ |
1766030835363872768 |