A thioredoxin from antarctic microcrustacean (Euphausia superba): Cloning and functional characterization

Thioredoxins, with a dithiol/disulfide active site (CGPC) are major highly conserved and ubiquitous proteins that are involved in protecting organisms against various oxidative stresses. In the present study, a novel thioredoxin gene was identified in antarctic microcrustacean, Euphausia superba (de...

Full description

Bibliographic Details
Published in:Fish & Shellfish Immunology
Main Authors: Li, Fengmei, Ma, Liyan, Zhang, Huan, Xu, Li, Zhu, Qianqian
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/136724
https://doi.org/10.1016/j.fsi.2017.02.035
Description
Summary:Thioredoxins, with a dithiol/disulfide active site (CGPC) are major highly conserved and ubiquitous proteins that are involved in protecting organisms against various oxidative stresses. In the present study, a novel thioredoxin gene was identified in antarctic microcrustacean, Euphausia superba (designated as EsTrx1). The full-length cDNA sequences of EsTrx1 was of 621 bp, containing a 5' untranslated region (UTR) of 45 bp, a 3' UTR of 276 bp and an open reading frame (ORF) of 303 bp encoding a putative protein of 100 amino acids. The predicted molecular weight of EsTrx1 was 11.08 kDa and the theoretical isoelectric point was 4.51. Multiple sequence alignment indicated that the EsTrx1 possessed conserved CGPC redox-active site. EsTrx1 shared 68.6% similarity with the Chinese mitten crab (Eriocheir sinensis) Trx1. The predicted three-dimensional structure of EsTrx1 consisted of a central core of a four-stranded beta-sheet and four flanking alpha-helices. The high similarity of EsTrx1 with Trxls from other animals together with the phylogenetic analysis indicated that EsTrx1 could be a novel member of Trx1 sub-family. In order to elucidate its biological functions, the recombinant EsTrx1 was constructed and expressed in Escherichia coli BL21 (DE3). Experiments demonstrated that the rEsTrx1 fusion protein possessed the expected redox activity in enzymatic analysis, and be more potent than GSH in antioxidant capacity. These results together indicated that EsTrx1 could be involved in the oxidative stress response of E. superba. (C) 2017 Elsevier Ltd. All rights reserved.