背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究

本研究探討阿里山背景地區及台南郊區於夏季、秋季非高污染時期、高污染時期及農廢燃燒時期之大氣氣膠無機鹽類及二元有機酸(low-molecular-weight dicarboxylic acids)之組成變異,並探討氣膠之無機鹽類及二元有機酸組成粒徑分布特性。 氣膠SO42-之前趨物SO2之日夜濃度變化,於高污染時期日夜間之SO2濃度均較其他時期為高,濃度分別為32.8±7.6 ug m-3、20.3±7.7 ug m-3,而阿里山背景環境之SO2日夜平均濃度最低,分別為0.15±0.04 ug m-3、0.12±0.06 ug m-3,顯示背景環境之SO2濃度遠低於郊區所受之人為污染排放。 阿...

Full description

Bibliographic Details
Main Authors: 翁子翔, Tzu-hsiang Weng
Other Authors: 蔡瀛逸, 嘉南藥理科技大學:環境工程與科學系碩士班
Format: Thesis
Language:Chinese
English
Published: 2006
Subjects:
Online Access:https://ir.cnu.edu.tw/handle/310902800/9091
https://ir.cnu.edu.tw/bitstream/310902800/9091/3/index.html
id ftchiananuniv:oai:ir.cnu.edu.tw:310902800/9091
record_format openpolar
institution Open Polar
collection Chia Nan University of Pharmacy & Science Institutional Repository (CHNAIR)
op_collection_id ftchiananuniv
language Chinese
English
topic 大氣氣膠
二元有機酸
spellingShingle 大氣氣膠
二元有機酸
翁子翔
Tzu-hsiang Weng
背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
topic_facet 大氣氣膠
二元有機酸
description 本研究探討阿里山背景地區及台南郊區於夏季、秋季非高污染時期、高污染時期及農廢燃燒時期之大氣氣膠無機鹽類及二元有機酸(low-molecular-weight dicarboxylic acids)之組成變異,並探討氣膠之無機鹽類及二元有機酸組成粒徑分布特性。 氣膠SO42-之前趨物SO2之日夜濃度變化,於高污染時期日夜間之SO2濃度均較其他時期為高,濃度分別為32.8±7.6 ug m-3、20.3±7.7 ug m-3,而阿里山背景環境之SO2日夜平均濃度最低,分別為0.15±0.04 ug m-3、0.12±0.06 ug m-3,顯示背景環境之SO2濃度遠低於郊區所受之人為污染排放。 阿里山背景地區之PM2.5氣膠之SO42-、NO3-、NH4+濃度日間比夜間為高,且SO42-濃度最高,再者為NH4+,由於在阿里山區NH4+的前趨物NH3來源豐富,在光化反應下有較高之NH4+濃度表現。而台南郊區夏季及秋季無機鹽類濃度均以SO42-、NO3-及NH4+光化產物為最大量,且秋季非高污染時期SO42-、NO3-及NH4+濃度均高於夏季,又以SO42-的9.67±2.29 ug m-3濃度為最高。而高污染時期氣膠NO3->SO42-,與在夏季與秋季非高污染時期為SO42->NO3-不同,且NO3-濃度表現在農廢燃燒時期與高污染時期,佔PM2.5質量比例在白天分別為19.6%及18.0%,所佔PM2.5 mass的比例最大,顯示高污染及農廢燃燒時期,NO3-對PM2.5 mass的貢獻有明顯增加。此外農廢燃燒污染時期NH4+濃度較高污染時期更高出0.95 ug m-3。 而在阿里山背景地區二元有機酸,以oxalic acid為最大量,succinic acid次之,再者為malonic acid,而二元有機酸均與NH4+具有高度相關性,顯示阿里山之氣膠二元有機酸之生成主要來自自然排放後經光化反應所形成。而台南郊區高污染時期氣膠二元有機酸日夜間濃度有明顯增量,而濃度以oxalic acid>succinic acid>maleic acid,其二元有機酸組成濃度多寡順序與夏季相同,而六種二元有機酸之濃度在日間較夏季及秋季非高污染時高出約2-3倍,農廢燃燒時期,二元有機酸之日夜趨勢與高污染時非常相似,由濃度相關矩陣發現oxalic acid與NH4+、K+相關性為0.72、0.69,這三者的關係比其它大氣時期為高,顯示農廢燃燒氣膠含有大量oxalic acid。 在大氣氣膠濃度粒徑分布上,阿里山背景地區無機鹽類主要波峰分布在0.46-2.4 um的droplet mode、5.7-11.3 um的coarse mode及4-90 nm 的nuclei mode,二元有機酸最主要則是在0.46-2.4 um的droplet mode,且4 nm有最初始二元有機酸微粒之生成,而在台南郊區之氣膠無機鹽類與二元有機酸組成之濃度粒徑分布,由夏季的單峰或雙峰,轉變成秋季的三峰及更多波峰的形態,高污染時的二元有機酸最大濃度波峰集中於0.19-0.32 um的condensation mode,顯示高污染時期氣膠有更明顯的二元有機酸膠凝及光化產物生成貢獻。此外,氣膠succinic acid (C4)及malonic acid (C3)之最大濃度波峰與oxalic acid (C2)不同,秋季非高污染時期及高污染時期之oxalic acid最大濃度波峰往奈米粒徑位移,顯示秋季氣膠oxalic acid是經由C4和C3二元有機酸光化反應後之最後產物。 In this research, variations of characteristic composition as well as size distributions of the atmospheric inorganic salts and low-molecular-weight dicarboxylic acids (low-Mw DCAs) in aerosol for the background Ali Mountain and Tainan suburban regions during summer season, the autumn non-serious pollution period, the autumn high pollution period and the agricultural burning period were studied. During the high pollution period, Tainan has higher concentrations of daytime and nighttime concentrations of SO2, a precursor to the formation of SO42-, ...
author2 蔡瀛逸
嘉南藥理科技大學:環境工程與科學系碩士班
format Thesis
author 翁子翔
Tzu-hsiang Weng
author_facet 翁子翔
Tzu-hsiang Weng
author_sort 翁子翔
title 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
title_short 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
title_full 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
title_fullStr 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
title_full_unstemmed 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
title_sort 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
publishDate 2006
url https://ir.cnu.edu.tw/handle/310902800/9091
https://ir.cnu.edu.tw/bitstream/310902800/9091/3/index.html
genre Arctic
genre_facet Arctic
op_relation 校內外均一年後公開
1.Bai, H., Lu, C., Chang, K.-F., Fang, G.-C., 2003. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmospheric Environment 37, 941-947. 2.Barbouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208. 3.Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environmenet 37, 2825-2835. 4.Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulomonary deposition assessment. Atmospheric Environment 31, 3659-3665. 5.Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623-1632. 6.Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. Technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203. 7.Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations Journal of the Air and Waste Management Association 47, 2-19. 8.Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31, 2061-2081. 9.Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmospheric Environment 30, 4233-4249. 10.Choi, M.Y., Chan, C.K., 2002. Continuous measurements of the water activities in aqueous droplets of water-soluble organic compounds. Journal of Physical Chemistry A106, 4566-4572. 11.Chow, J.C., Watson, J.G., Fujuta, E.M., Z. Lu., Lawson, D.R., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment 28, 2061-2080. 12.Colbeck, I., Harrision, R.M., 1984. Ozone-secondary aerosol-visibility Relationships in North-West England. Science of the Total Environment 34, 87-100. 13.Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 33, 2661-2668. 14.Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13,111-13,123. 15.Dasch, JM., Cadle, S.H., Kennedy, K.G., Mulawa, P.A., 1989. Comparison of annular denuders and filter packs for atmospheric sampling. Atmospheric Environment 23, 2775-2782. 16.Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air and Waste Management Association 47, 411-418. 17.Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air Pollution. Annual Reviews of Public Health 15, 107-132. 18.Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 410, 257-259. 19.Grosjean, D., Cauwenberghe, K.V., Schmid, J.P., Kelley, P.E., Pitts, L.N.J., 1978. Identification of C3-C10 aliphatic dicaeboxylic acids in airborne particulate matter. Environmental Science and Technology 12, 313-317. 20.Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 ?dicarbonyls. Environmental Science and Technology 21, 52-63. 21.Hayami, H., 2005. Behavior of secondary inorganic species in gaseous and aerosol phases measured in Fukue Island, Japan, in dust season. Atmospheric Environment 39, 127-139. 22.Hayasaka, T., Nakajima, S., Ohta, S., Tanaka, M., 1992. Optical and chemical properties of urban aerosols in Sendai and Sapporo, Japan. Atmospheric Environment 26A, 2055-2062. 23.He, L.Y, Hu, M., Huang, X.F., Yu, B.D., Zhang, Y.H., Liu, D.Q., 2004. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment 38, 6557-6564. 24.Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J,C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040. 25.Huang, X.F., Hu, M., He, L.-Y., Tang, X.-Y., 2005. Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819-2827. 26.Hudson, J.G., 1992. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607. 27.John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359. 28.Jones, D.L., 1998. Organic acids in the rhizosphere—a critical review. Plant and Soil 205, 25-44. 29.Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568. 30.Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110. 31.Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235. 32.Kawamura, K., Kasukabe, H., Barrie, L.A., 1996. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: one year of observations. Atmospheric Environment 30, 1709-1722. 33.Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509. 34.Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment 39, 1945-1960. 35.Kerminen, V.-M., Wexler, A.S., 1995. Growth laws for atmospheric aerosol particle: an examination of the bimodality of the accumulation mode. Atmospheric Environment 29, 3263-3275. 36.Kerminen, V.-M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942. 37.Kerminen, V.-M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acid in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362. 38.Kerminen, V.-M., 2001. Relative roles of secondary sulfate and organics in atmospheric Cloud condensation nuclei production. Journal of Geophysical Research 106, 17321-17333. 39.Khwaja, H.A., 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29, 127-139. 40.Koçak, M., Hubilay, N., Mihalopoulos, N., 2004. Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: implications regarding sources and long-range transport. Atmospheric Environment 38, 2067-2077. 41.Kohler, H., 1936. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society 32, 1152-1161. 42.Langford, A.O., Fehsenfeld, F.C., 1992. The role of natural vegetation as a source or sink for atmospheric ammonia: a case study. Science 255, 581-583. 43.Larson, S.M., Cass, G.R., Grary, H.A., 1989. Atmospheric carbon particles and the Los Angeles visibility problem. Aerosol Science and Technology 10, 118-130. 44.Laschoberf, C., Limbeck, A., Rendl, J., Puxbaum, H., 2004. Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment 38, 2187-2195. 45.Lee, W.H., Lacobellis, S.F., Somerville, R.C.J., 1997. Cloud radiation forcings and feedbacks: general circulation model tests and observational validation. Journal of Climate 10, 2479-2496. 46.Lee, J.H., Kim, Y.P., Moon, K.-C., Kim, H,-K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643. 47.Lightowlers, P.J., Cape, J.N., 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment 22, 7-15. 48.Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852. 49.Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Research 35, 1853-1862. 50.Limbeck, A., Yolanda, K., Hans, P., 2005. Gas to particle distribution of low molecular weight dicarboxylic acid at two different sites in central Europe (Austria). Journal of Aerosol Science 36, 991-1005. 51.Lin, J.J., 2002. Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36, 1911-1920. 52.Lin, Y.C., Yu, J.Z., 2005. Simultaneous determination of momo and dicarboxylic acids, ω-oxo-carboxylic acids, midchain ketocarboxylic acids and dldehydes in atmospheric aerosol samples. Environmental Science and Technology 39, 7616-7624. 53.Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934. 54.Lohmann, U., Lesins, G., 2002. Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012-1016. 55.Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148. 56.Matsumoto, M., Okita, T., 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmospheric Environment 32, 1419-1425. 57.Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.S., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research 99, 1347-1370. 58.Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037. 59.Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591. 60.Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104. 61.Narukawa, M., Kawamura, K., Li, S.M., Bottenheim, J.W., 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmospheric Environment 36, 2491-2499. 62.Norton, R.B., 1985. Measurements of formate and acetate in precipitation at Niwot Ridge and Boulder, Colorado. Journal of Geophysical Research 97, 10389-10393. 63.Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822. 64.Park, S.S., Kim, Y.J., 2004. PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmospheric Environment 38, 1459-1471. 65.Peng, C., Chan, C.K., 2001. The water cycles of water soluble organic salts of atmospheric importance. Atmospheric Environment 35, 1183-1192. 66.Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environmental Science and Techonolog 35, 4495-4501. 67.Possanzini, M., Santis, F., Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602. 68.Reid, J.S.R., Eck, K.T.F., Eleuterio, D.P., 2004. A review of biomass burning emissions, Part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions 4, 5135-5200. 69.Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674. 70.Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330. 71.Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: seasonal and air mass characteristics Environmental Science and Technology 35, 95-101. 72.Röhrl, A., Lammel, G., 2002. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples. Chemosphere 46, 1195-1199. 73.Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770. 74.Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Wiley, New York 1326pp. 75.Sempere, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosol from urban atmosphere. Atmospheric Environment 28, 449-459. 76.Shulman, M.L., Jacobson, M.C., Charlson, R.J., Synovec, R,E., Young, T.E., 1996. Dissolution behaviour and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters 23, 277-280. 77.Sjödin, A., Ferm, M., 1985. Measurement of nitrous acid in urban areas. Atmospheric Environment 19, 985-992. 78.Spengler, J.D., Kourtrakis, P., Dockery, D.W., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: air pollution exposures. Environmental Health Perspective 104, 492-499. 79.Spengler, J.D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956. 80.Stephens, G.L., Tsay, S.C., Stackouse, P.W., Flat, P.J., 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of Atmospheric Science 47, 1742-1753. 81.Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmospheric Environment 40, 795-820. 82.Tolocka, M.P., Solomon, P.A., Mitchell, W., Norris, G.A., Gemmill, D.B., Wiener, R.W., Vanderpool, R.W., Homolya, J.B., Rice, J., 2001. East versus West in the US:Chemical characteristics of PM2.5 during the winter of 1999. Aerosol Science and Technology 34, 88-96. 83.Tsai, Y.I., Cheng, M.T., 1999. Visibility and aerosol chemical compositions near the coastal area in central Taiwan. Science of the Total Environment 231, 37-51. 84.Tsai, Y.I., Lin, Y.H., Lee, S.Z., 2003. Visibility variation with air qualities in the metropolitan area in southern Taiwan. Water Air Soil Pollut. 144, 19-40. 85.Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric PM10 aerosols in a metropolitan basin. Chemosphere 54, 1171-1181. 86.Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839. 87.Turnbull, A,B., Harrison, R.M., 2000. Majou component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137. 88.Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences 34, 1149-1152. 89.US EPA, 1996. Air quality criteria for particulate matter. EPA/600/P-95/001 aF, National Center for Environmental As-sessment, Office of Research and Development, Research Triangle Park, NC. 90.Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density 38, 1235-1246. 91.Wang, G., Huang, L., Gao, S., Wang, L., 2002. Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China. Atmospheric Environment 36, 1299-1307. 92.Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941-1950. 93.Wang, H., Kawamura, K., Shooter, D., 2005. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: implications for solid fuel combustion. Atmospheric Environment 39, 5865-5875. 94.Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., 1994. Chemical mass balance source apportionment of PM10 during the Southern California air quality study. Aerosol Science and Technology 21, 1-36. 95.Whitby, K. T., Cantrell, B., Fine Particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers (1976) 96.Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653. 97.Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234. 98.Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2003. Characterization of dicarboxylic acids acid in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970. 99.Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric environment 38, 963-970. 100.Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment 39, 3967-3976. 101.Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853. 102.林銳敏、蔡俊鴻、江鴻龍、林允涵、張凱倫,「二次氣膠粒徑分佈變異特性研究」,第十屆氣膠科技研討會,台中,2003。 103.郭素卿,「南台灣大氣氣膠酸鹼特性及含水率之時空變異研究」,嘉南藥理科技大學環境工程衛生系碩士論文,台南,2003。 104.游智淵、張艮輝,「第三代台灣地區生物源排放量推估模式之建立與應用」,第18屆空氣污染控制技術研討會,台中,2004。 105.張凱倫,「大氣奈米微粒無機鹽類組成特性研究」,國立成奶j學環境工程學系碩士論文,台南,2004。 106.黃香儒,「秋冬季節之大氣氣膠無機鹽類及二元酸之組成及粒徑變異研究」,嘉南藥理科技大學環境工程與科學系,台南,2005。 107.楊奇儒,「積塵在捲揚作用對地面附近大氣粒粒狀物濃度之影響」,國立成奶j學環境工程學系碩士論文,台南,1994。 108.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性來源分析」,國立中興大學環境工程學系碩士論文,台中,1998。 109.溫育勇,「NO2干擾環形氣固分離器之氣相亞硝酸採樣的誤差」,國立成奶j學環境工程學系碩士論文,台南2002。 110.蔡瀛逸、郭素卿、黃香儒,「大氣二元有機酸之組成粒徑分布與時變異」,第十一屆中華民國國際氣膠科技研討會論文集,第156-161頁,台中,2004。
https://ir.cnu.edu.tw/handle/310902800/9091
https://ir.cnu.edu.tw/bitstream/310902800/9091/3/index.html
_version_ 1766302664960770048
spelling ftchiananuniv:oai:ir.cnu.edu.tw:310902800/9091 2023-05-15T14:28:30+02:00 背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究 Characterization of Compositions and Size Distributions of Inorganic Salts and Dicarboxylic Acids in Background and Suburban Aerosols 翁子翔 Tzu-hsiang Weng 蔡瀛逸 嘉南藥理科技大學:環境工程與科學系碩士班 2006 application/pdf 0 bytes https://ir.cnu.edu.tw/handle/310902800/9091 https://ir.cnu.edu.tw/bitstream/310902800/9091/3/index.html zh_TW en-US en_US chi eng 校內外均一年後公開 1.Bai, H., Lu, C., Chang, K.-F., Fang, G.-C., 2003. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmospheric Environment 37, 941-947. 2.Barbouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208. 3.Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environmenet 37, 2825-2835. 4.Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulomonary deposition assessment. Atmospheric Environment 31, 3659-3665. 5.Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623-1632. 6.Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. Technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203. 7.Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations Journal of the Air and Waste Management Association 47, 2-19. 8.Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31, 2061-2081. 9.Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmospheric Environment 30, 4233-4249. 10.Choi, M.Y., Chan, C.K., 2002. Continuous measurements of the water activities in aqueous droplets of water-soluble organic compounds. Journal of Physical Chemistry A106, 4566-4572. 11.Chow, J.C., Watson, J.G., Fujuta, E.M., Z. Lu., Lawson, D.R., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment 28, 2061-2080. 12.Colbeck, I., Harrision, R.M., 1984. Ozone-secondary aerosol-visibility Relationships in North-West England. Science of the Total Environment 34, 87-100. 13.Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 33, 2661-2668. 14.Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13,111-13,123. 15.Dasch, JM., Cadle, S.H., Kennedy, K.G., Mulawa, P.A., 1989. Comparison of annular denuders and filter packs for atmospheric sampling. Atmospheric Environment 23, 2775-2782. 16.Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air and Waste Management Association 47, 411-418. 17.Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air Pollution. Annual Reviews of Public Health 15, 107-132. 18.Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 410, 257-259. 19.Grosjean, D., Cauwenberghe, K.V., Schmid, J.P., Kelley, P.E., Pitts, L.N.J., 1978. Identification of C3-C10 aliphatic dicaeboxylic acids in airborne particulate matter. Environmental Science and Technology 12, 313-317. 20.Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 ?dicarbonyls. Environmental Science and Technology 21, 52-63. 21.Hayami, H., 2005. Behavior of secondary inorganic species in gaseous and aerosol phases measured in Fukue Island, Japan, in dust season. Atmospheric Environment 39, 127-139. 22.Hayasaka, T., Nakajima, S., Ohta, S., Tanaka, M., 1992. Optical and chemical properties of urban aerosols in Sendai and Sapporo, Japan. Atmospheric Environment 26A, 2055-2062. 23.He, L.Y, Hu, M., Huang, X.F., Yu, B.D., Zhang, Y.H., Liu, D.Q., 2004. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment 38, 6557-6564. 24.Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J,C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040. 25.Huang, X.F., Hu, M., He, L.-Y., Tang, X.-Y., 2005. Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819-2827. 26.Hudson, J.G., 1992. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607. 27.John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359. 28.Jones, D.L., 1998. Organic acids in the rhizosphere—a critical review. Plant and Soil 205, 25-44. 29.Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568. 30.Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110. 31.Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235. 32.Kawamura, K., Kasukabe, H., Barrie, L.A., 1996. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: one year of observations. Atmospheric Environment 30, 1709-1722. 33.Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509. 34.Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment 39, 1945-1960. 35.Kerminen, V.-M., Wexler, A.S., 1995. Growth laws for atmospheric aerosol particle: an examination of the bimodality of the accumulation mode. Atmospheric Environment 29, 3263-3275. 36.Kerminen, V.-M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942. 37.Kerminen, V.-M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acid in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362. 38.Kerminen, V.-M., 2001. Relative roles of secondary sulfate and organics in atmospheric Cloud condensation nuclei production. Journal of Geophysical Research 106, 17321-17333. 39.Khwaja, H.A., 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29, 127-139. 40.Koçak, M., Hubilay, N., Mihalopoulos, N., 2004. Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: implications regarding sources and long-range transport. Atmospheric Environment 38, 2067-2077. 41.Kohler, H., 1936. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society 32, 1152-1161. 42.Langford, A.O., Fehsenfeld, F.C., 1992. The role of natural vegetation as a source or sink for atmospheric ammonia: a case study. Science 255, 581-583. 43.Larson, S.M., Cass, G.R., Grary, H.A., 1989. Atmospheric carbon particles and the Los Angeles visibility problem. Aerosol Science and Technology 10, 118-130. 44.Laschoberf, C., Limbeck, A., Rendl, J., Puxbaum, H., 2004. Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment 38, 2187-2195. 45.Lee, W.H., Lacobellis, S.F., Somerville, R.C.J., 1997. Cloud radiation forcings and feedbacks: general circulation model tests and observational validation. Journal of Climate 10, 2479-2496. 46.Lee, J.H., Kim, Y.P., Moon, K.-C., Kim, H,-K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643. 47.Lightowlers, P.J., Cape, J.N., 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment 22, 7-15. 48.Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852. 49.Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Research 35, 1853-1862. 50.Limbeck, A., Yolanda, K., Hans, P., 2005. Gas to particle distribution of low molecular weight dicarboxylic acid at two different sites in central Europe (Austria). Journal of Aerosol Science 36, 991-1005. 51.Lin, J.J., 2002. Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36, 1911-1920. 52.Lin, Y.C., Yu, J.Z., 2005. Simultaneous determination of momo and dicarboxylic acids, ω-oxo-carboxylic acids, midchain ketocarboxylic acids and dldehydes in atmospheric aerosol samples. Environmental Science and Technology 39, 7616-7624. 53.Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934. 54.Lohmann, U., Lesins, G., 2002. Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012-1016. 55.Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148. 56.Matsumoto, M., Okita, T., 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmospheric Environment 32, 1419-1425. 57.Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.S., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research 99, 1347-1370. 58.Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037. 59.Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591. 60.Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104. 61.Narukawa, M., Kawamura, K., Li, S.M., Bottenheim, J.W., 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmospheric Environment 36, 2491-2499. 62.Norton, R.B., 1985. Measurements of formate and acetate in precipitation at Niwot Ridge and Boulder, Colorado. Journal of Geophysical Research 97, 10389-10393. 63.Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822. 64.Park, S.S., Kim, Y.J., 2004. PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmospheric Environment 38, 1459-1471. 65.Peng, C., Chan, C.K., 2001. The water cycles of water soluble organic salts of atmospheric importance. Atmospheric Environment 35, 1183-1192. 66.Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environmental Science and Techonolog 35, 4495-4501. 67.Possanzini, M., Santis, F., Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602. 68.Reid, J.S.R., Eck, K.T.F., Eleuterio, D.P., 2004. A review of biomass burning emissions, Part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions 4, 5135-5200. 69.Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674. 70.Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330. 71.Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: seasonal and air mass characteristics Environmental Science and Technology 35, 95-101. 72.Röhrl, A., Lammel, G., 2002. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples. Chemosphere 46, 1195-1199. 73.Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770. 74.Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Wiley, New York 1326pp. 75.Sempere, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosol from urban atmosphere. Atmospheric Environment 28, 449-459. 76.Shulman, M.L., Jacobson, M.C., Charlson, R.J., Synovec, R,E., Young, T.E., 1996. Dissolution behaviour and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters 23, 277-280. 77.Sjödin, A., Ferm, M., 1985. Measurement of nitrous acid in urban areas. Atmospheric Environment 19, 985-992. 78.Spengler, J.D., Kourtrakis, P., Dockery, D.W., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: air pollution exposures. Environmental Health Perspective 104, 492-499. 79.Spengler, J.D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956. 80.Stephens, G.L., Tsay, S.C., Stackouse, P.W., Flat, P.J., 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of Atmospheric Science 47, 1742-1753. 81.Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmospheric Environment 40, 795-820. 82.Tolocka, M.P., Solomon, P.A., Mitchell, W., Norris, G.A., Gemmill, D.B., Wiener, R.W., Vanderpool, R.W., Homolya, J.B., Rice, J., 2001. East versus West in the US:Chemical characteristics of PM2.5 during the winter of 1999. Aerosol Science and Technology 34, 88-96. 83.Tsai, Y.I., Cheng, M.T., 1999. Visibility and aerosol chemical compositions near the coastal area in central Taiwan. Science of the Total Environment 231, 37-51. 84.Tsai, Y.I., Lin, Y.H., Lee, S.Z., 2003. Visibility variation with air qualities in the metropolitan area in southern Taiwan. Water Air Soil Pollut. 144, 19-40. 85.Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric PM10 aerosols in a metropolitan basin. Chemosphere 54, 1171-1181. 86.Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839. 87.Turnbull, A,B., Harrison, R.M., 2000. Majou component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137. 88.Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences 34, 1149-1152. 89.US EPA, 1996. Air quality criteria for particulate matter. EPA/600/P-95/001 aF, National Center for Environmental As-sessment, Office of Research and Development, Research Triangle Park, NC. 90.Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density 38, 1235-1246. 91.Wang, G., Huang, L., Gao, S., Wang, L., 2002. Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China. Atmospheric Environment 36, 1299-1307. 92.Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941-1950. 93.Wang, H., Kawamura, K., Shooter, D., 2005. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: implications for solid fuel combustion. Atmospheric Environment 39, 5865-5875. 94.Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., 1994. Chemical mass balance source apportionment of PM10 during the Southern California air quality study. Aerosol Science and Technology 21, 1-36. 95.Whitby, K. T., Cantrell, B., Fine Particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers (1976) 96.Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653. 97.Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234. 98.Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2003. Characterization of dicarboxylic acids acid in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970. 99.Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric environment 38, 963-970. 100.Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment 39, 3967-3976. 101.Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853. 102.林銳敏、蔡俊鴻、江鴻龍、林允涵、張凱倫,「二次氣膠粒徑分佈變異特性研究」,第十屆氣膠科技研討會,台中,2003。 103.郭素卿,「南台灣大氣氣膠酸鹼特性及含水率之時空變異研究」,嘉南藥理科技大學環境工程衛生系碩士論文,台南,2003。 104.游智淵、張艮輝,「第三代台灣地區生物源排放量推估模式之建立與應用」,第18屆空氣污染控制技術研討會,台中,2004。 105.張凱倫,「大氣奈米微粒無機鹽類組成特性研究」,國立成奶j學環境工程學系碩士論文,台南,2004。 106.黃香儒,「秋冬季節之大氣氣膠無機鹽類及二元酸之組成及粒徑變異研究」,嘉南藥理科技大學環境工程與科學系,台南,2005。 107.楊奇儒,「積塵在捲揚作用對地面附近大氣粒粒狀物濃度之影響」,國立成奶j學環境工程學系碩士論文,台南,1994。 108.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性來源分析」,國立中興大學環境工程學系碩士論文,台中,1998。 109.溫育勇,「NO2干擾環形氣固分離器之氣相亞硝酸採樣的誤差」,國立成奶j學環境工程學系碩士論文,台南2002。 110.蔡瀛逸、郭素卿、黃香儒,「大氣二元有機酸之組成粒徑分布與時變異」,第十一屆中華民國國際氣膠科技研討會論文集,第156-161頁,台中,2004。 https://ir.cnu.edu.tw/handle/310902800/9091 https://ir.cnu.edu.tw/bitstream/310902800/9091/3/index.html 大氣氣膠 二元有機酸 thesis 2006 ftchiananuniv 2022-05-15T05:23:21Z 本研究探討阿里山背景地區及台南郊區於夏季、秋季非高污染時期、高污染時期及農廢燃燒時期之大氣氣膠無機鹽類及二元有機酸(low-molecular-weight dicarboxylic acids)之組成變異,並探討氣膠之無機鹽類及二元有機酸組成粒徑分布特性。 氣膠SO42-之前趨物SO2之日夜濃度變化,於高污染時期日夜間之SO2濃度均較其他時期為高,濃度分別為32.8±7.6 ug m-3、20.3±7.7 ug m-3,而阿里山背景環境之SO2日夜平均濃度最低,分別為0.15±0.04 ug m-3、0.12±0.06 ug m-3,顯示背景環境之SO2濃度遠低於郊區所受之人為污染排放。 阿里山背景地區之PM2.5氣膠之SO42-、NO3-、NH4+濃度日間比夜間為高,且SO42-濃度最高,再者為NH4+,由於在阿里山區NH4+的前趨物NH3來源豐富,在光化反應下有較高之NH4+濃度表現。而台南郊區夏季及秋季無機鹽類濃度均以SO42-、NO3-及NH4+光化產物為最大量,且秋季非高污染時期SO42-、NO3-及NH4+濃度均高於夏季,又以SO42-的9.67±2.29 ug m-3濃度為最高。而高污染時期氣膠NO3->SO42-,與在夏季與秋季非高污染時期為SO42->NO3-不同,且NO3-濃度表現在農廢燃燒時期與高污染時期,佔PM2.5質量比例在白天分別為19.6%及18.0%,所佔PM2.5 mass的比例最大,顯示高污染及農廢燃燒時期,NO3-對PM2.5 mass的貢獻有明顯增加。此外農廢燃燒污染時期NH4+濃度較高污染時期更高出0.95 ug m-3。 而在阿里山背景地區二元有機酸,以oxalic acid為最大量,succinic acid次之,再者為malonic acid,而二元有機酸均與NH4+具有高度相關性,顯示阿里山之氣膠二元有機酸之生成主要來自自然排放後經光化反應所形成。而台南郊區高污染時期氣膠二元有機酸日夜間濃度有明顯增量,而濃度以oxalic acid>succinic acid>maleic acid,其二元有機酸組成濃度多寡順序與夏季相同,而六種二元有機酸之濃度在日間較夏季及秋季非高污染時高出約2-3倍,農廢燃燒時期,二元有機酸之日夜趨勢與高污染時非常相似,由濃度相關矩陣發現oxalic acid與NH4+、K+相關性為0.72、0.69,這三者的關係比其它大氣時期為高,顯示農廢燃燒氣膠含有大量oxalic acid。 在大氣氣膠濃度粒徑分布上,阿里山背景地區無機鹽類主要波峰分布在0.46-2.4 um的droplet mode、5.7-11.3 um的coarse mode及4-90 nm 的nuclei mode,二元有機酸最主要則是在0.46-2.4 um的droplet mode,且4 nm有最初始二元有機酸微粒之生成,而在台南郊區之氣膠無機鹽類與二元有機酸組成之濃度粒徑分布,由夏季的單峰或雙峰,轉變成秋季的三峰及更多波峰的形態,高污染時的二元有機酸最大濃度波峰集中於0.19-0.32 um的condensation mode,顯示高污染時期氣膠有更明顯的二元有機酸膠凝及光化產物生成貢獻。此外,氣膠succinic acid (C4)及malonic acid (C3)之最大濃度波峰與oxalic acid (C2)不同,秋季非高污染時期及高污染時期之oxalic acid最大濃度波峰往奈米粒徑位移,顯示秋季氣膠oxalic acid是經由C4和C3二元有機酸光化反應後之最後產物。 In this research, variations of characteristic composition as well as size distributions of the atmospheric inorganic salts and low-molecular-weight dicarboxylic acids (low-Mw DCAs) in aerosol for the background Ali Mountain and Tainan suburban regions during summer season, the autumn non-serious pollution period, the autumn high pollution period and the agricultural burning period were studied. During the high pollution period, Tainan has higher concentrations of daytime and nighttime concentrations of SO2, a precursor to the formation of SO42-, ... Thesis Arctic Chia Nan University of Pharmacy & Science Institutional Repository (CHNAIR)