礁溪溫泉區地溫分布與數值模擬
礁溪溫泉區因泉質優良且居處平原帶、交通方便,溫泉產業興盛。但過度開發造成溫泉溫度下降、溫泉範圍變小,恐會引起搶水或溫泉枯竭而無法永續經營。本研究以礁溪13 口監測井,實地量測井溫剖面、調查地溫分布,並撰寫二維熱傳輸程式,來解釋其溫度分布的控制因素,並模擬水平抽水之溫度變化的影響,提供礁溪溫泉區溫泉水資源管理的參考。 現場監測結果,各井的實測井溫剖面大多呈現上下稍冷、中間較熱,惟最高溫的深度分布不一。推測本區的熱水流速約為10-5 至10-6m/s,熱傳導的控制因子應以對流為主,當流速為(或低於)10-7m/s時,對熱傳導的影響已很小,熱傳導的控制因子應以傳導為主。 模擬顯示,人為抽水行為加強了...
Main Author: | |
---|---|
Other Authors: | , |
Format: | Thesis |
Language: | Chinese English |
Published: |
2012
|
Subjects: | |
Online Access: | https://ir.cnu.edu.tw/handle/310902800/26309 https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/etd-0725112-095040.pdf https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/index.html |
id |
ftchiananuniv:oai:ir.cnu.edu.tw:310902800/26309 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Chia Nan University of Pharmacy & Science Institutional Repository (CHNAIR) |
op_collection_id |
ftchiananuniv |
language |
Chinese English |
topic |
數值模擬 地溫分布 礁溪溫泉 Jiaosi hot springs underground temperature distribution |
spellingShingle |
數值模擬 地溫分布 礁溪溫泉 Jiaosi hot springs underground temperature distribution 吳秀珠 礁溪溫泉區地溫分布與數值模擬 |
topic_facet |
數值模擬 地溫分布 礁溪溫泉 Jiaosi hot springs underground temperature distribution |
description |
礁溪溫泉區因泉質優良且居處平原帶、交通方便,溫泉產業興盛。但過度開發造成溫泉溫度下降、溫泉範圍變小,恐會引起搶水或溫泉枯竭而無法永續經營。本研究以礁溪13 口監測井,實地量測井溫剖面、調查地溫分布,並撰寫二維熱傳輸程式,來解釋其溫度分布的控制因素,並模擬水平抽水之溫度變化的影響,提供礁溪溫泉區溫泉水資源管理的參考。 現場監測結果,各井的實測井溫剖面大多呈現上下稍冷、中間較熱,惟最高溫的深度分布不一。推測本區的熱水流速約為10-5 至10-6m/s,熱傳導的控制因子應以對流為主,當流速為(或低於)10-7m/s時,對熱傳導的影響已很小,熱傳導的控制因子應以傳導為主。 模擬顯示,人為抽水行為加強了熱水向下游流動,若假設在中游大量抽水(位於太子與奇立丹之間),此水位沉降椎造成奇立丹地區原本往東南流之地下水,改往西北流,二龍方面的冷水往西北擴大,造成溫泉範圍縮小及溫度降低。如果抽水井較靠近二龍(即位於30℃邊界的東側),抽水後因奇立丹及30℃邊界的地下水仍往東南流,不但不會造成溫度降低,且溫泉的範圍應會增加。但考慮奇立丹、二龍至竹安地區泥層很厚,位於地層下陷區且接近海邊,在此區抽水可能有很高的環境成本。 The spa industry flourishes in Jiaosi hot-spring area because of its excellent spring quality and habitation at the plains with convenient transportation. However, excessive development made its temperature drop and the range smaller. This might cause the competing for the spring or the drying of the spring that prevents the continuing operation. In this study, 13 monitoring wells in Jiaosi are measured for the profiles of temperature of these wells to investigate the temperature distribution. Two-dimensional heat transfer software is written to explain the control factors of temperature distribution and to simulate the effects on temperature changes when springs are pumped from the same level. This will provide a reference in managing hot springs resources in Jiaosi hot-spring area. The site monitoring result shows that the measured profiles of temperatures of the wells are mostly slightly cool in the upper and lower levels, but hotter in the middle, except that the temperature at depth is distributed differently. When the hot water flows at the rate of about 10-5 to 10-6 m/s, the control factor of the thermal conductivity should be dominated by the convection. When the flow rate is 10-7m/s or below, the thermal conductivity is small and the control factor of the thermal conductivity should be dominated by the conduction. The simulations show that artificially pumping behavior strengthens the flow of hot water to the downstream. Assuming that a large number of pumping in the midstream (between Tai-Tzu and Qili ... |
author2 |
溫泉產業研究所 陳文福 |
format |
Thesis |
author |
吳秀珠 |
author_facet |
吳秀珠 |
author_sort |
吳秀珠 |
title |
礁溪溫泉區地溫分布與數值模擬 |
title_short |
礁溪溫泉區地溫分布與數值模擬 |
title_full |
礁溪溫泉區地溫分布與數值模擬 |
title_fullStr |
礁溪溫泉區地溫分布與數值模擬 |
title_full_unstemmed |
礁溪溫泉區地溫分布與數值模擬 |
title_sort |
礁溪溫泉區地溫分布與數值模擬 |
publishDate |
2012 |
url |
https://ir.cnu.edu.tw/handle/310902800/26309 https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/etd-0725112-095040.pdf https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/index.html |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
校內外均一年後公開 ,學年度:100,142頁 參 考 文 獻 ㄧ、中文部分: 1.工業技術研究院礦業研究所(1975)。臺灣地熱資源探勘工作報告。 桃園縣:工業技術研究院。 2.工業技術研究院能源與資源研究所(1993)。礁溪溫泉區地球物理 及鑽井探勘報告。宜蘭縣:宜蘭縣政府。 3.工業技術研究院能源與資源研究所(2000-2003)。台灣溫泉水資源 之調查及開發利用。台北市:經濟部水利署。 4.工業技術研究院及臺灣糖業公司(2003)。礁溪溫泉地區觀測井建 置成果報告。新北市:經濟部中央地質調查所。 5.中央氣象局全球資訊網(2011)http://www.cwb.gov.tw/ 6.中華民國觀光協會(2011) http://www.hot-spring-association.com.tw/ 7.文淵閣工作室(2010)。C/C++技研手冊。台北:松崗資產管理股份 有限公司。 8.王震寰(2008)。C++最新程式設計範例入門。台北:上奇科技股份 有限公司。 9.玉山資源股份有限公司(2008)。北區溫泉監測系統站址規畫設計。 台北市:經濟部水利署。 10.玉山資源股份有限公司(2009)。礁溪溫泉地區基本資料調查暨改 118 善規畫。台北市:經濟部水利署。 11.甘露寺泰雄(1997)。溫泉今昔物語。地熱ユネルギ,第22 卷,第 3 期,第4-22 頁。 12.江協堂、徐春田(2009)。量測火山體溫—地溫監測。科學發展, 5 月、437 期,第32-39 頁。 13.交通部觀光局(2011)http://202.39.225.136/indexc.asp 14.李振誥、林士哲、馬惠達、林宏奕(2003)。金崙溫泉資源之調查 分析。台灣水利,第51 卷,第3 期,第58-68 頁。 15.李振誥、陳尉平、龔文瑞、葉信富(2008)。以地下水位變動法結 合消退曲線位移法評估地下水補助量。農業工程學報,第53 卷, 第3 期。 16.李和祥(2005)。溫泉資源調查分析之研究-以四重溪與中崙溫泉為 例。國立成功大學資源工程學系碩士論文,台南市。 17.李京霖(2006)。陽明山馬槽地區溫泉資源調查分析之研究。國立 成功大學資源工程學系碩士論文,台南市。 18.吳永助(1973)。台灣溫泉區之地熱潛能。礦業技術,第10-12 期,第2-6 頁。 19.周順安、蔣立為、歐陽湘(2003)。台灣溫泉水資源潛能探討。新 竹縣:工研院能資所。 119 20.周家慧(2009)。礁溪地區溫泉人工補注之研究。國立成功大學資 源工程學系碩士論文,台南市。 21.宜蘭縣政府(2001)。礁溪溫泉資源調查監測與利用計畫期末報告。 宜蘭縣:宜蘭縣政府。 22.宜蘭縣政府(2002)。礁溪岩盤溫泉調查開發供應與溫泉區劃定計 畫期末報告。宜蘭縣:宜蘭縣政府。 23.宜蘭縣政府(2003)。礁溪岩盤溫泉調查開發供應與溫泉區劃定 第一階段定案報告。宜蘭縣:宜蘭縣政府。 24.林朝宗(2000)。新店地質圖說明書。五萬分之一臺灣地質圖說明 書,圖幅第九號,新北市:經濟部中央地質調查所。 25.林士哲(2003)。金崙地區溫泉資源調查分析之研究。國立成功大 學資源工程學系碩士論文,台南市。 26.林琪達(2010)。礁溪溫泉之生成模式與觀測。嘉南藥理科技大學 溫泉產業研究所碩士論文,台南市。 27.高堂貴(2002)。溫泉分佈調查方法與可行性之研究。國立中興 大學土木工程學系碩士論文,台中市。 28.高橋麻奈(2008)。最新C++物件導向程式設計實例入門。台北: 博碩文化股份有限公司。 29 郭立楷(2007)。深層岩體熱力-水力-力學偶合行為之研究。國立 120 成功大學資源工程學系碩士論文,台南市。 30.郭瑋萍(2008)。知本地區溫泉資源調查分析之研究。國立成功大 學資源工程學系碩士論文,台南市。 31.莊雅芳(2008)。溫泉可開發量推估及其應用。國立成功大學資源 工程學系碩士論文,台南市。 32.程楓萍(1978)。臺灣溫泉之地球化學探勘。礦治,第22 卷,第4 期,第72-83 頁。 33.黃鑑水、何信昌(1989)。頭城地質圖說明書。五萬分之一臺灣地 質圖說明書,圖幅第十號,新北市:經濟部中央地質調查所。 34.黃家怡(2006)。溫泉休閒產業未來發展--以礁溪溫泉區為例。佛 光人文學院未來學系碩士論文,宜蘭市。 35.黃三桂(2009)。台灣地區溫泉產業永續發展之研究 -以烏來溫 泉公共管線工程生命週期為例。國立中央大學土木工程學系在職 專班碩士論文,中壢市。 36.張智欽(2000)。礁溪溫泉安全出水量之研究。師大地理研究報告, 第32 期,第23-50 頁。 37.張智欽(2000)。礁溪溫泉之研究—兼論溫泉開發與觀光產業的發 展。台北:固地文化事業有限公司。 38 張智欽(2007)。開天闢地礁溪溫泉。蘭陽博物館電子報,第25 121 期。 39.張寶堂(2004)。礁溪溫泉資源調查與開發之研究。國立臺北科技 大學材料及資源工程系碩士論文,台北市。 40.張嘉陽(2009)。礁溪溫泉之水位、水溫變化之研究。嘉南藥理科 技大學環境工程與科學系碩士論文,台南市。 41.陳文福、余光昌、孫思優、陳信安、林指宏(2010)。休閒溫泉學。 台北:華都文化事業有限公司。 42.陳文福、呂學諭(2010)。礁溪溫泉之生成模式與水位水溫觀測。 中央地質調查所彙刊,第23 期,第109-136 頁。 43.陳文福、陳尉平、李孫榮、張廣智(2009)。溫泉生產井兼作水位 及水量監測井之可行性。農業工程學報,第55 卷、第3 期,第 53-64 頁。 44.經濟部水利署網站全球資訊網(2011)http://www.wra.gov.tw/ 45.嘉南藥理科技大學(2008)。溫泉監測技術評估與應用。台北市: 經濟部水利署。 46.臺灣糖業公司地下水開發保育中心(2000)。地下水觀測網之建立 與運作管理:宜蘭平原、桃園台地及嘉南平原。台北市:經濟部 水利署。 47.臺灣糖業公司地下水開發保育中心(2004)。台灣地區地下水觀測 122 網水質常態監測與調查分析。台北市:經濟部水利署。 48.臺灣大學建築與城鄉發展基金會(2002)。礁溪溫泉資源調查、監 測與利用計畫。宜蘭縣:宜蘭縣政府。 49.賴奕任(2011)。礁溪溫泉之監測資料處理,嘉南藥理科技大學溫 泉產業研究所碩士論文,台南市。 50.礁溪鄉公所(2011)http://jiaosi.e-land.gov.tw/ 51.礁溪鄉農會(2011)http://jsfa.myweb.hinet.net/ 123 二、英文部分: 1.Anderson M.P. (2005) Heat as a Ground Water Tracer.GROUND WATER. 43, No. 6: 951–968 2.Bartolino, J.R., and R.G. Niswonger.(1999)Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. Water Resources Investigation Report 99-4212. Albuquerque, New Mexico: USGS. 3.Bear, J.(1972)Dynamics of Fluids in Porous Media. New York: American Elsevier Publishing Company Inc. 4.Bethke, C. ( 1985 ) A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins Journal of Geophysical Research 90, no. B8: 6817–6828. 5.Bethke, C.M. (1986)Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois Basin brines. Economic Geology 81, no. 2: 233–249. 6.Bethke, C.M., W.J. Harrison, C. Upson, and S.P. Altaner.(1988) Supercomputer analysis of sedimentary basins. Science 239, no. 4837: 261–267. 7.Birkholzer, J.T., S. Mukhopadhyay, and Y.W. Tsang(. 2004) Modeling seepage into heated waste emplacement tunnels in unsaturated fractured rock. Vadose Zone Journal 3, no.3: 819–836. 124 8.Bravo, H.R., J. Feng, and R.J. Hunt.(2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resources Research 38, no. 8: 10.1029/2000WR000172. 9.Bredehoeft, J. D. and I. S. Papadopulos(1965)Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resources Research, 1(2),p325-328。 10.Bundschuh, J.(1993) Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. Journal of Hydrology 142, no. 4: 427–444. 11.Burow, K.R., J. Constantz, and R. Fujii.(2005)Using heat as a tracer to estimate dissolved organic carbon flux beneath a restored wetland. Ground Water 43, no. 4: 545–556. 12.Cartwright, K.(1970)Groundwater discharge in the Illinois basin as suggested by temperature anomalies. Water Resources Research 6, no. 3: 912–918. 13.Clauser, C., ed.(2003) Numerical Simulation of Reactive Flow in Hot Aquifers. New York: Springer Verlag. 14.Corbet, T.F., and C.M. Bethke.(1992)Disequilibrium fluid pressures and groundwater flow in the Western Canada sedimentary basin. Journal of Geophysical Research 97, no. 7: 7203–7217. 15.Constantz, J. ( 1998 ) Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water 125 Resources Research 34, no. 7: 1609–1616. 16.Constantz, J., and D.A. Stonestrom.(2003)Heat as a tracer of water movement near streams. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. D.A. Stonestrom and J. Constantz, 1–6. USGS Circular 1260. Reston, Virginia: USGS. 17.deMarsily, G. ( 1986 ) Quantitative Hydrogeology. San Diego, California: Academic Press. 18.Deming, D. ( 2002 ) Introduction to Hydrogeology. New York: McGraw-Hill. 19.Domenico, P.A., and V.V. Palciauskas.(1973)Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84, 3803–3814. 20.Domenico, P. A., and Schwartz, F. W. (1990) “Physical and Chemical Hydrogeology,” Wiley, New York. 21.Domenico, P.A., and F.W. Schwartz.(1998)Physical and Chemical Hydrogeology, 2nd ed. New York: John Wiley & Sons Inc. 22.Ingebritsen, S.E., and W.E. Sanford.(1998)Groundwater in Geologic Processes. Cambridge, UK: Cambridge University Press. 23.Keys, W.S., and L.M. MacCary.(1971) Application of borehole geophysics to water-resources investigations. In Techniques of Water Resources Investigations, Book 2, chap. E1. Washington, DC: USGS. 24.Kipp, K.L. Jr.(1997)Guide to the revised heat and solute transport 126 simulator: HST3D. Water Resources Investigation Report 97-4157. Denver, Colorado: USGS. 25.Mansure, A.J., and M. Reiter.(1979) A vertical groundwater correction for heat flow. Journal of Geophysicical Research 84, no. B7: 3490–3496. 26.Marechal, J.C., P. Perrochet, and L. Tacher.(1999) Longterm simulations of thermal and hydraulic characteristics in a mountain massif: The Mont Blanc case study, French and Italian Alps. Hydrogeology Journal 7, no. 4: 341–354. 27.Mei-Ting, Hsieh(2010)The chaiienges of spring tourism in Taiwan. JOURNAL OF TAIWAN HOSPITALITY & TOURISM.vol.7 :121-131,July. 28.Molson, J.W., E.O. Frind, and C. Palmer.(1992) Thermal energy storage in an unconfined aquifer 2. Model development validation and application. Water Resources Research 28, no. 10: 2845–2856. 29.Molson, J.W., and E.O. Frind.(2000) Density Dependent Flow and Thermal Energy Transport Model in Three Dimensions: User Guide. Waterloo, Ontario, Canada: Waterloo Centre for Groundwater Research, University of Waterloo. 30.Munz M, Oswald S.E, Schmidt C,(2010)Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation, Hydrol. Earth Syst. Sci. Discuss., 8, 6155-6197. 127 31.Pruess, K.(2004)The TOUGH codes—A family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone Journal 3, no. 3: 738–746. 32.Pruess, K., C. Oldenburg, and D. Moridis.(1999) TOUGH2 User’s Guide. Version 2.0. LBNL-43134. Berkeley, California: Lawrence Berkeley National Laboratory. 33.Ronan, A.D., D.E. Prudic, C.E. Thodal, and J. Constantz.(1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resources Research 34,no. 9: 2137–2153. 34.Screaton, E., and S. Ge.(1997) An assessment of along-strike fluid and heat transport within the Barbados Ridge accretionary complex: Results of preliminary modeling. Geophysical Research Letters 24, no. 23: 3085–3088. 35.Silliman S.E, Ramirez J, McCabe RL,(1995)Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature, Jour Hydrology, 167, 99-119. 36.Stallman, R.W.(1963)Computation of ground-water velocity from temperature data. In: Methods of Collecting and Interpreting Ground-Water Data, ed. R. Bentall, 36–46. Water Supply Paper 1544-H. Washington, DC: USGS. 37.Stallman, R.W.(1965) Steady one-dimensional fluid flow in a 128 semi-infinite porous medium with sinusoidal surface temperature. Journal of Geophysical Research 70, no. 12: 2821–2827. 38.Stonestrom, DA and KW Blasch.(2003)Determining temperature and thermal properties for heat-based studies of surface-water ground-waer interactions. In heat as a tool for studying the movement of ground water near streams, ed. DA Stonestrom and J Constantz, 73-80. USGS Circular 1260. Reston, Virginea: USGS. 39.Su, G.W., J. Jasperse, D. Seymour, and J. Constantz. (2004) Estimation of hydraulic conductivity in an alluvial system using temperatures. Ground Water 42, no. 6: 890–901. 40.Suzuki, S.(1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. Journal of Geophysical Research 65, no. 9: 2883–2885. 41.Tsai TC, Wu CC, Hsu WR,(2008)On soil temperature analysis and soil thermal diffusivity estimation in Taiwan, Atmospheric Sciences 36, 83-100. 42.Ussher G.,Harvey C.,Johnstone R.,Anderson E(. 2000) Understanding the Resistivities observed in geothermal systems. Proceedings World Geothermal Congress 2000, 1915-1920. 43.Voss, C.I., and A.M. Provost.(2002)SUTRA, a model for saturatedunsaturated variable-density ground-water flow with solute or energy transport. Water-Resources Investigations Report 02-4231. Reston, Virginia: USGS. 129 44.Wankiewicz, A.(1984) Hydrothermal processes beneath arctic river channels. Water Resources Research 20, no. 10: 1417–1426 45.Williams, D.D., M.-K. Lee, J.E. Crawford, and P.O. Tyree.(1999) Analysis of convective heat transfer in deformed and stratified aquifers associated with Frasch thermal mining. Ground Water 37, no. 4: 517–522. 46.Yang, J., R.N. Edwards, J.W. Molson, and E.A. Sudicky.(1996) Fracture-induced hydrothermal convection in the oceanic crust and the interpretation of heat-flow data. Geophysical Research Letters 23, no. 9: 929–932. 47.Ziagos, J., and D.D. Blackwell.(1986)A model for the transient temperature effects of horizontal fluid flow in geothermal systems. Journal of Volcanology and Geothermal Research 27, no. 3–4: 371–397. https://ir.cnu.edu.tw/handle/310902800/26309 https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/etd-0725112-095040.pdf https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/index.html |
op_doi |
https://doi.org/10.1029/2000WR000172. |
_version_ |
1790595533540163584 |
spelling |
ftchiananuniv:oai:ir.cnu.edu.tw:310902800/26309 2024-02-11T09:59:46+01:00 礁溪溫泉區地溫分布與數值模擬 The Underground Temperature Distribution and Numerical Simulation in Jiaosi Hot-Spring Area 吳秀珠 溫泉產業研究所 陳文福 2012 https://ir.cnu.edu.tw/handle/310902800/26309 https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/etd-0725112-095040.pdf https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/index.html zh_TW en_US chi eng 校內外均一年後公開 ,學年度:100,142頁 參 考 文 獻 ㄧ、中文部分: 1.工業技術研究院礦業研究所(1975)。臺灣地熱資源探勘工作報告。 桃園縣:工業技術研究院。 2.工業技術研究院能源與資源研究所(1993)。礁溪溫泉區地球物理 及鑽井探勘報告。宜蘭縣:宜蘭縣政府。 3.工業技術研究院能源與資源研究所(2000-2003)。台灣溫泉水資源 之調查及開發利用。台北市:經濟部水利署。 4.工業技術研究院及臺灣糖業公司(2003)。礁溪溫泉地區觀測井建 置成果報告。新北市:經濟部中央地質調查所。 5.中央氣象局全球資訊網(2011)http://www.cwb.gov.tw/ 6.中華民國觀光協會(2011) http://www.hot-spring-association.com.tw/ 7.文淵閣工作室(2010)。C/C++技研手冊。台北:松崗資產管理股份 有限公司。 8.王震寰(2008)。C++最新程式設計範例入門。台北:上奇科技股份 有限公司。 9.玉山資源股份有限公司(2008)。北區溫泉監測系統站址規畫設計。 台北市:經濟部水利署。 10.玉山資源股份有限公司(2009)。礁溪溫泉地區基本資料調查暨改 118 善規畫。台北市:經濟部水利署。 11.甘露寺泰雄(1997)。溫泉今昔物語。地熱ユネルギ,第22 卷,第 3 期,第4-22 頁。 12.江協堂、徐春田(2009)。量測火山體溫—地溫監測。科學發展, 5 月、437 期,第32-39 頁。 13.交通部觀光局(2011)http://202.39.225.136/indexc.asp 14.李振誥、林士哲、馬惠達、林宏奕(2003)。金崙溫泉資源之調查 分析。台灣水利,第51 卷,第3 期,第58-68 頁。 15.李振誥、陳尉平、龔文瑞、葉信富(2008)。以地下水位變動法結 合消退曲線位移法評估地下水補助量。農業工程學報,第53 卷, 第3 期。 16.李和祥(2005)。溫泉資源調查分析之研究-以四重溪與中崙溫泉為 例。國立成功大學資源工程學系碩士論文,台南市。 17.李京霖(2006)。陽明山馬槽地區溫泉資源調查分析之研究。國立 成功大學資源工程學系碩士論文,台南市。 18.吳永助(1973)。台灣溫泉區之地熱潛能。礦業技術,第10-12 期,第2-6 頁。 19.周順安、蔣立為、歐陽湘(2003)。台灣溫泉水資源潛能探討。新 竹縣:工研院能資所。 119 20.周家慧(2009)。礁溪地區溫泉人工補注之研究。國立成功大學資 源工程學系碩士論文,台南市。 21.宜蘭縣政府(2001)。礁溪溫泉資源調查監測與利用計畫期末報告。 宜蘭縣:宜蘭縣政府。 22.宜蘭縣政府(2002)。礁溪岩盤溫泉調查開發供應與溫泉區劃定計 畫期末報告。宜蘭縣:宜蘭縣政府。 23.宜蘭縣政府(2003)。礁溪岩盤溫泉調查開發供應與溫泉區劃定 第一階段定案報告。宜蘭縣:宜蘭縣政府。 24.林朝宗(2000)。新店地質圖說明書。五萬分之一臺灣地質圖說明 書,圖幅第九號,新北市:經濟部中央地質調查所。 25.林士哲(2003)。金崙地區溫泉資源調查分析之研究。國立成功大 學資源工程學系碩士論文,台南市。 26.林琪達(2010)。礁溪溫泉之生成模式與觀測。嘉南藥理科技大學 溫泉產業研究所碩士論文,台南市。 27.高堂貴(2002)。溫泉分佈調查方法與可行性之研究。國立中興 大學土木工程學系碩士論文,台中市。 28.高橋麻奈(2008)。最新C++物件導向程式設計實例入門。台北: 博碩文化股份有限公司。 29 郭立楷(2007)。深層岩體熱力-水力-力學偶合行為之研究。國立 120 成功大學資源工程學系碩士論文,台南市。 30.郭瑋萍(2008)。知本地區溫泉資源調查分析之研究。國立成功大 學資源工程學系碩士論文,台南市。 31.莊雅芳(2008)。溫泉可開發量推估及其應用。國立成功大學資源 工程學系碩士論文,台南市。 32.程楓萍(1978)。臺灣溫泉之地球化學探勘。礦治,第22 卷,第4 期,第72-83 頁。 33.黃鑑水、何信昌(1989)。頭城地質圖說明書。五萬分之一臺灣地 質圖說明書,圖幅第十號,新北市:經濟部中央地質調查所。 34.黃家怡(2006)。溫泉休閒產業未來發展--以礁溪溫泉區為例。佛 光人文學院未來學系碩士論文,宜蘭市。 35.黃三桂(2009)。台灣地區溫泉產業永續發展之研究 -以烏來溫 泉公共管線工程生命週期為例。國立中央大學土木工程學系在職 專班碩士論文,中壢市。 36.張智欽(2000)。礁溪溫泉安全出水量之研究。師大地理研究報告, 第32 期,第23-50 頁。 37.張智欽(2000)。礁溪溫泉之研究—兼論溫泉開發與觀光產業的發 展。台北:固地文化事業有限公司。 38 張智欽(2007)。開天闢地礁溪溫泉。蘭陽博物館電子報,第25 121 期。 39.張寶堂(2004)。礁溪溫泉資源調查與開發之研究。國立臺北科技 大學材料及資源工程系碩士論文,台北市。 40.張嘉陽(2009)。礁溪溫泉之水位、水溫變化之研究。嘉南藥理科 技大學環境工程與科學系碩士論文,台南市。 41.陳文福、余光昌、孫思優、陳信安、林指宏(2010)。休閒溫泉學。 台北:華都文化事業有限公司。 42.陳文福、呂學諭(2010)。礁溪溫泉之生成模式與水位水溫觀測。 中央地質調查所彙刊,第23 期,第109-136 頁。 43.陳文福、陳尉平、李孫榮、張廣智(2009)。溫泉生產井兼作水位 及水量監測井之可行性。農業工程學報,第55 卷、第3 期,第 53-64 頁。 44.經濟部水利署網站全球資訊網(2011)http://www.wra.gov.tw/ 45.嘉南藥理科技大學(2008)。溫泉監測技術評估與應用。台北市: 經濟部水利署。 46.臺灣糖業公司地下水開發保育中心(2000)。地下水觀測網之建立 與運作管理:宜蘭平原、桃園台地及嘉南平原。台北市:經濟部 水利署。 47.臺灣糖業公司地下水開發保育中心(2004)。台灣地區地下水觀測 122 網水質常態監測與調查分析。台北市:經濟部水利署。 48.臺灣大學建築與城鄉發展基金會(2002)。礁溪溫泉資源調查、監 測與利用計畫。宜蘭縣:宜蘭縣政府。 49.賴奕任(2011)。礁溪溫泉之監測資料處理,嘉南藥理科技大學溫 泉產業研究所碩士論文,台南市。 50.礁溪鄉公所(2011)http://jiaosi.e-land.gov.tw/ 51.礁溪鄉農會(2011)http://jsfa.myweb.hinet.net/ 123 二、英文部分: 1.Anderson M.P. (2005) Heat as a Ground Water Tracer.GROUND WATER. 43, No. 6: 951–968 2.Bartolino, J.R., and R.G. Niswonger.(1999)Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. Water Resources Investigation Report 99-4212. Albuquerque, New Mexico: USGS. 3.Bear, J.(1972)Dynamics of Fluids in Porous Media. New York: American Elsevier Publishing Company Inc. 4.Bethke, C. ( 1985 ) A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins Journal of Geophysical Research 90, no. B8: 6817–6828. 5.Bethke, C.M. (1986)Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois Basin brines. Economic Geology 81, no. 2: 233–249. 6.Bethke, C.M., W.J. Harrison, C. Upson, and S.P. Altaner.(1988) Supercomputer analysis of sedimentary basins. Science 239, no. 4837: 261–267. 7.Birkholzer, J.T., S. Mukhopadhyay, and Y.W. Tsang(. 2004) Modeling seepage into heated waste emplacement tunnels in unsaturated fractured rock. Vadose Zone Journal 3, no.3: 819–836. 124 8.Bravo, H.R., J. Feng, and R.J. Hunt.(2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resources Research 38, no. 8: 10.1029/2000WR000172. 9.Bredehoeft, J. D. and I. S. Papadopulos(1965)Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resources Research, 1(2),p325-328。 10.Bundschuh, J.(1993) Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. Journal of Hydrology 142, no. 4: 427–444. 11.Burow, K.R., J. Constantz, and R. Fujii.(2005)Using heat as a tracer to estimate dissolved organic carbon flux beneath a restored wetland. Ground Water 43, no. 4: 545–556. 12.Cartwright, K.(1970)Groundwater discharge in the Illinois basin as suggested by temperature anomalies. Water Resources Research 6, no. 3: 912–918. 13.Clauser, C., ed.(2003) Numerical Simulation of Reactive Flow in Hot Aquifers. New York: Springer Verlag. 14.Corbet, T.F., and C.M. Bethke.(1992)Disequilibrium fluid pressures and groundwater flow in the Western Canada sedimentary basin. Journal of Geophysical Research 97, no. 7: 7203–7217. 15.Constantz, J. ( 1998 ) Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water 125 Resources Research 34, no. 7: 1609–1616. 16.Constantz, J., and D.A. Stonestrom.(2003)Heat as a tracer of water movement near streams. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. D.A. Stonestrom and J. Constantz, 1–6. USGS Circular 1260. Reston, Virginia: USGS. 17.deMarsily, G. ( 1986 ) Quantitative Hydrogeology. San Diego, California: Academic Press. 18.Deming, D. ( 2002 ) Introduction to Hydrogeology. New York: McGraw-Hill. 19.Domenico, P.A., and V.V. Palciauskas.(1973)Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84, 3803–3814. 20.Domenico, P. A., and Schwartz, F. W. (1990) “Physical and Chemical Hydrogeology,” Wiley, New York. 21.Domenico, P.A., and F.W. Schwartz.(1998)Physical and Chemical Hydrogeology, 2nd ed. New York: John Wiley & Sons Inc. 22.Ingebritsen, S.E., and W.E. Sanford.(1998)Groundwater in Geologic Processes. Cambridge, UK: Cambridge University Press. 23.Keys, W.S., and L.M. MacCary.(1971) Application of borehole geophysics to water-resources investigations. In Techniques of Water Resources Investigations, Book 2, chap. E1. Washington, DC: USGS. 24.Kipp, K.L. Jr.(1997)Guide to the revised heat and solute transport 126 simulator: HST3D. Water Resources Investigation Report 97-4157. Denver, Colorado: USGS. 25.Mansure, A.J., and M. Reiter.(1979) A vertical groundwater correction for heat flow. Journal of Geophysicical Research 84, no. B7: 3490–3496. 26.Marechal, J.C., P. Perrochet, and L. Tacher.(1999) Longterm simulations of thermal and hydraulic characteristics in a mountain massif: The Mont Blanc case study, French and Italian Alps. Hydrogeology Journal 7, no. 4: 341–354. 27.Mei-Ting, Hsieh(2010)The chaiienges of spring tourism in Taiwan. JOURNAL OF TAIWAN HOSPITALITY & TOURISM.vol.7 :121-131,July. 28.Molson, J.W., E.O. Frind, and C. Palmer.(1992) Thermal energy storage in an unconfined aquifer 2. Model development validation and application. Water Resources Research 28, no. 10: 2845–2856. 29.Molson, J.W., and E.O. Frind.(2000) Density Dependent Flow and Thermal Energy Transport Model in Three Dimensions: User Guide. Waterloo, Ontario, Canada: Waterloo Centre for Groundwater Research, University of Waterloo. 30.Munz M, Oswald S.E, Schmidt C,(2010)Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation, Hydrol. Earth Syst. Sci. Discuss., 8, 6155-6197. 127 31.Pruess, K.(2004)The TOUGH codes—A family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone Journal 3, no. 3: 738–746. 32.Pruess, K., C. Oldenburg, and D. Moridis.(1999) TOUGH2 User’s Guide. Version 2.0. LBNL-43134. Berkeley, California: Lawrence Berkeley National Laboratory. 33.Ronan, A.D., D.E. Prudic, C.E. Thodal, and J. Constantz.(1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resources Research 34,no. 9: 2137–2153. 34.Screaton, E., and S. Ge.(1997) An assessment of along-strike fluid and heat transport within the Barbados Ridge accretionary complex: Results of preliminary modeling. Geophysical Research Letters 24, no. 23: 3085–3088. 35.Silliman S.E, Ramirez J, McCabe RL,(1995)Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature, Jour Hydrology, 167, 99-119. 36.Stallman, R.W.(1963)Computation of ground-water velocity from temperature data. In: Methods of Collecting and Interpreting Ground-Water Data, ed. R. Bentall, 36–46. Water Supply Paper 1544-H. Washington, DC: USGS. 37.Stallman, R.W.(1965) Steady one-dimensional fluid flow in a 128 semi-infinite porous medium with sinusoidal surface temperature. Journal of Geophysical Research 70, no. 12: 2821–2827. 38.Stonestrom, DA and KW Blasch.(2003)Determining temperature and thermal properties for heat-based studies of surface-water ground-waer interactions. In heat as a tool for studying the movement of ground water near streams, ed. DA Stonestrom and J Constantz, 73-80. USGS Circular 1260. Reston, Virginea: USGS. 39.Su, G.W., J. Jasperse, D. Seymour, and J. Constantz. (2004) Estimation of hydraulic conductivity in an alluvial system using temperatures. Ground Water 42, no. 6: 890–901. 40.Suzuki, S.(1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. Journal of Geophysical Research 65, no. 9: 2883–2885. 41.Tsai TC, Wu CC, Hsu WR,(2008)On soil temperature analysis and soil thermal diffusivity estimation in Taiwan, Atmospheric Sciences 36, 83-100. 42.Ussher G.,Harvey C.,Johnstone R.,Anderson E(. 2000) Understanding the Resistivities observed in geothermal systems. Proceedings World Geothermal Congress 2000, 1915-1920. 43.Voss, C.I., and A.M. Provost.(2002)SUTRA, a model for saturatedunsaturated variable-density ground-water flow with solute or energy transport. Water-Resources Investigations Report 02-4231. Reston, Virginia: USGS. 129 44.Wankiewicz, A.(1984) Hydrothermal processes beneath arctic river channels. Water Resources Research 20, no. 10: 1417–1426 45.Williams, D.D., M.-K. Lee, J.E. Crawford, and P.O. Tyree.(1999) Analysis of convective heat transfer in deformed and stratified aquifers associated with Frasch thermal mining. Ground Water 37, no. 4: 517–522. 46.Yang, J., R.N. Edwards, J.W. Molson, and E.A. Sudicky.(1996) Fracture-induced hydrothermal convection in the oceanic crust and the interpretation of heat-flow data. Geophysical Research Letters 23, no. 9: 929–932. 47.Ziagos, J., and D.D. Blackwell.(1986)A model for the transient temperature effects of horizontal fluid flow in geothermal systems. Journal of Volcanology and Geothermal Research 27, no. 3–4: 371–397. https://ir.cnu.edu.tw/handle/310902800/26309 https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/etd-0725112-095040.pdf https://ir.cnu.edu.tw/bitstream/310902800/26309/-1/index.html 數值模擬 地溫分布 礁溪溫泉 Jiaosi hot springs underground temperature distribution thesis 2012 ftchiananuniv https://doi.org/10.1029/2000WR000172. 2024-01-12T01:34:38Z 礁溪溫泉區因泉質優良且居處平原帶、交通方便,溫泉產業興盛。但過度開發造成溫泉溫度下降、溫泉範圍變小,恐會引起搶水或溫泉枯竭而無法永續經營。本研究以礁溪13 口監測井,實地量測井溫剖面、調查地溫分布,並撰寫二維熱傳輸程式,來解釋其溫度分布的控制因素,並模擬水平抽水之溫度變化的影響,提供礁溪溫泉區溫泉水資源管理的參考。 現場監測結果,各井的實測井溫剖面大多呈現上下稍冷、中間較熱,惟最高溫的深度分布不一。推測本區的熱水流速約為10-5 至10-6m/s,熱傳導的控制因子應以對流為主,當流速為(或低於)10-7m/s時,對熱傳導的影響已很小,熱傳導的控制因子應以傳導為主。 模擬顯示,人為抽水行為加強了熱水向下游流動,若假設在中游大量抽水(位於太子與奇立丹之間),此水位沉降椎造成奇立丹地區原本往東南流之地下水,改往西北流,二龍方面的冷水往西北擴大,造成溫泉範圍縮小及溫度降低。如果抽水井較靠近二龍(即位於30℃邊界的東側),抽水後因奇立丹及30℃邊界的地下水仍往東南流,不但不會造成溫度降低,且溫泉的範圍應會增加。但考慮奇立丹、二龍至竹安地區泥層很厚,位於地層下陷區且接近海邊,在此區抽水可能有很高的環境成本。 The spa industry flourishes in Jiaosi hot-spring area because of its excellent spring quality and habitation at the plains with convenient transportation. However, excessive development made its temperature drop and the range smaller. This might cause the competing for the spring or the drying of the spring that prevents the continuing operation. In this study, 13 monitoring wells in Jiaosi are measured for the profiles of temperature of these wells to investigate the temperature distribution. Two-dimensional heat transfer software is written to explain the control factors of temperature distribution and to simulate the effects on temperature changes when springs are pumped from the same level. This will provide a reference in managing hot springs resources in Jiaosi hot-spring area. The site monitoring result shows that the measured profiles of temperatures of the wells are mostly slightly cool in the upper and lower levels, but hotter in the middle, except that the temperature at depth is distributed differently. When the hot water flows at the rate of about 10-5 to 10-6 m/s, the control factor of the thermal conductivity should be dominated by the convection. When the flow rate is 10-7m/s or below, the thermal conductivity is small and the control factor of the thermal conductivity should be dominated by the conduction. The simulations show that artificially pumping behavior strengthens the flow of hot water to the downstream. Assuming that a large number of pumping in the midstream (between Tai-Tzu and Qili ... Thesis Arctic Chia Nan University of Pharmacy & Science Institutional Repository (CHNAIR) |