Safe and fuel-efficient voyage planning for the northeast passage by combining reliable ship performance, weather and ice forecast models

The Northeast Passage in the Arctic between Europe and Asia offers a significantly shorter voyage compared to the Southern route through the Suez Canal. In 2017, the EU research project “Safe maritime operations under extreme conditions: the Arctic case (SEDNA)” was established to perform a comprehe...

Full description

Bibliographic Details
Main Authors: Li, Zhiyuan, Ringsberg, Jonas, Ding, Li, Rita, Francisco, Fournier, Nicolas, Mendes, Joana
Language:unknown
Published: 2020
Subjects:
Online Access:https://research.chalmers.se/en/publication/779c9055-4aa8-4d49-9562-9ff0de1bbb38
Description
Summary:The Northeast Passage in the Arctic between Europe and Asia offers a significantly shorter voyage compared to the Southern route through the Suez Canal. In 2017, the EU research project “Safe maritime operations under extreme conditions: the Arctic case (SEDNA)” was established to perform a comprehensive analysis of Arctic transit shipping and to promote technical solutions for this purpose. This paper is based on the deliverables of the SEDNA project. A voyage planning tool (VPT) for Arctic applications was developed to plan the optimal route regarding ship’s fuel consumption and safety. One of the most advanced metocean and ice forecast model is utilized to provide comprehensive environmental conditions that are synchronized and will be updated frequently during the voyage. The ship energy system model takes into account the various environmental variables as well as ship’s operational conditions to compute the ship performance in both open and ice infested waters. For Arctic operations, specific ice resistance models are implemented in the VPT, and a user has the options of either relying on icebreaker assistance or going for unassisted navigation in part of the entire Arctic passage. Case study voyages of different ship types, route options, staring time, home/destination ports are simulated to demonstrate how various optimal routes are planned and how the transit time and fuel consumption vary. This information is considered being crucial for ship owners for planning their voyages in advance. The continuously updated voyage information from the VPT is particularly helpful for the ship crew if there are specific ship operations and risk mitigation actions that need to be taken care of during the voyage. In addition, this study underlines that a safe and fuel-efficient Arctic passage requires viable voyage planning tools that combine reliable ship performance with weather and ice forecasts.