Large scale physical model testing on the ultimate compressive strength of a steel stiffened plate structure at cryogenic condition

Ship structures are typical examples of large plated structures which are made of large number of structural elements composed into system structures to be strong enough, while keeping the structural weight at minimum, to survive varying loads arising from cargo (e.g. weight and cryogenic condition...

Full description

Bibliographic Details
Main Authors: Paik, Jeom Kee, Lee, Dong Hun, Noh, Sung Hwan, Park, Dae Kyeom, Ringsberg, Jonas
Language:unknown
Published: 2019
Subjects:
LNG
Online Access:https://research.chalmers.se/en/publication/818c0f6e-8d3d-4b9f-a46b-da431022ff71
Description
Summary:Ship structures are typical examples of large plated structures which are made of large number of structural elements composed into system structures to be strong enough, while keeping the structural weight at minimum, to survive varying loads arising from cargo (e.g. weight and cryogenic condition due to LNG cargo), waves, winds or other environmental conditions (e.g. cold temperature due to Arctic operation). The design of ship structures are today designed based on limit states which are defined by the description of a condition for which a particular structural member or an entire structure would fail to perform the function designated beforehand. Four types of limit states are relevant, namely SLS (serviceability limit state), ULS (ultimate limit state), FLS (fatigue limit state) and ALS (accidental limit state). At the preliminary design stage, structural scantlings and materials of ship structures are determined based on the ULS, and ultimately other types of limit states are integrated to ensure so that the different parts of a ship structure will meet safety requirements and survive environmental and operational conditions during the life time period of some 25 years. The stiffened plate structures in the bottom, the deck and the side-shell are the most important parts of a ship in association with a ship’s integrity, safety and survivability. The design criteria for determining the scantlings of stiffened plate structures are the ultimate limit states (or ultimate strength). If applied loads exceed the ultimate strength then the stiffened plate structures fail to perform the function, leading to total loss of the ship. Therefore, it is of vital importance to accurately and efficiently compute the ultimate strength of stiffened plate structures. The behavior of stiffened plate structures until and after the ultimate strength is reached is highly nonlinear involving geometric nonlinearities (e.g. buckling and large deflection) and material nonlinearities (e.g. yielding, plasticity and material failure or ...