GPS Meteorology: With Focus On Climate Application

The vital role of water vapour in the Earth’s climate system requires measurements of the atmospheric Integrated Water Vapour (IWV) with a long-term stability and a high accuracy. This work focuses on using the Global Positioning System (GPS) to provide IWV estimates for climate applications. The ad...

Full description

Bibliographic Details
Main Author: Ning, Tong
Language:unknown
Published: 2012
Subjects:
Online Access:https://research.chalmers.se/en/publication/157389
id ftchalmersuniv:oai:research.chalmers.se:157389
record_format openpolar
spelling ftchalmersuniv:oai:research.chalmers.se:157389 2023-05-15T16:12:18+02:00 GPS Meteorology: With Focus On Climate Application Ning, Tong 2012 text https://research.chalmers.se/en/publication/157389 unknown https://research.chalmers.se/en/publication/157389 Earth and Related Environmental Sciences Zenith Total Delay regional climate model atmospheric Integrated Water Vapour Global Positioning System 2012 ftchalmersuniv 2022-12-11T06:55:06Z The vital role of water vapour in the Earth’s climate system requires measurements of the atmospheric Integrated Water Vapour (IWV) with a long-term stability and a high accuracy. This work focuses on using the Global Positioning System (GPS) to provide IWV estimates for climate applications. The advantages of the GPS measurements are that they can be performed independently on the weather and have a high temporal resolution (a few minutes) as well as a continuously improving spatial resolution (a few km for some local networks). The uncertainty of the GPS-derived IWV highly depends on the accuracy of the estimated Zenith Total Delay (ZTD), which is determined by many parameters, i.e. satellite orbit errors, ionospheric delay, signal multipath, antenna related errors (e.g. phase centre variations), and mapping functions. We demonstrated that the uncertainty of the GPS-derived IWV below 1 kg/m^2 is achievable. The long-term change of the IWV can be an independent data source to detect climate changes. Using a global GPS IWV data set covering a 15-year-long time period, we found estimated IWV trends in a range from -1.65 to +2.32 kg/(m^2*decade) which, however, are comparable to the trend uncertainties varying from 0.21 to 1.52 kg/(m^2*decade). The trend uncertainty is mainly caused by the short-term variations of the IWV which cannot be modelled accurately. The uncertainty is also due to the errors in IWV estimates, which are random and/or elevation-dependent systematic errors. A higher elevation cutoff angle used in the GPS data analysis (a 25 degree was revealed for the time period investigated and for the region of Fennoscandia) can be an advantage to reduce the impact of such systematic errors.The GPS-derived IWV can also be used for the evaluation of climate models. The IWV derived from the GPS measurements acquired at 99 European sites, each with a maximum time series of 14 years, were compared to the IWV simulated by a regional climate model. Overall, a monthly mean difference of ~0.5 kg/m^2 (model-GPS) is ... Other/Unknown Material Fennoscandia Chalmers University of Technology: Chalmers research
institution Open Polar
collection Chalmers University of Technology: Chalmers research
op_collection_id ftchalmersuniv
language unknown
topic Earth and Related Environmental Sciences
Zenith Total Delay
regional climate model
atmospheric Integrated Water Vapour
Global Positioning System
spellingShingle Earth and Related Environmental Sciences
Zenith Total Delay
regional climate model
atmospheric Integrated Water Vapour
Global Positioning System
Ning, Tong
GPS Meteorology: With Focus On Climate Application
topic_facet Earth and Related Environmental Sciences
Zenith Total Delay
regional climate model
atmospheric Integrated Water Vapour
Global Positioning System
description The vital role of water vapour in the Earth’s climate system requires measurements of the atmospheric Integrated Water Vapour (IWV) with a long-term stability and a high accuracy. This work focuses on using the Global Positioning System (GPS) to provide IWV estimates for climate applications. The advantages of the GPS measurements are that they can be performed independently on the weather and have a high temporal resolution (a few minutes) as well as a continuously improving spatial resolution (a few km for some local networks). The uncertainty of the GPS-derived IWV highly depends on the accuracy of the estimated Zenith Total Delay (ZTD), which is determined by many parameters, i.e. satellite orbit errors, ionospheric delay, signal multipath, antenna related errors (e.g. phase centre variations), and mapping functions. We demonstrated that the uncertainty of the GPS-derived IWV below 1 kg/m^2 is achievable. The long-term change of the IWV can be an independent data source to detect climate changes. Using a global GPS IWV data set covering a 15-year-long time period, we found estimated IWV trends in a range from -1.65 to +2.32 kg/(m^2*decade) which, however, are comparable to the trend uncertainties varying from 0.21 to 1.52 kg/(m^2*decade). The trend uncertainty is mainly caused by the short-term variations of the IWV which cannot be modelled accurately. The uncertainty is also due to the errors in IWV estimates, which are random and/or elevation-dependent systematic errors. A higher elevation cutoff angle used in the GPS data analysis (a 25 degree was revealed for the time period investigated and for the region of Fennoscandia) can be an advantage to reduce the impact of such systematic errors.The GPS-derived IWV can also be used for the evaluation of climate models. The IWV derived from the GPS measurements acquired at 99 European sites, each with a maximum time series of 14 years, were compared to the IWV simulated by a regional climate model. Overall, a monthly mean difference of ~0.5 kg/m^2 (model-GPS) is ...
author Ning, Tong
author_facet Ning, Tong
author_sort Ning, Tong
title GPS Meteorology: With Focus On Climate Application
title_short GPS Meteorology: With Focus On Climate Application
title_full GPS Meteorology: With Focus On Climate Application
title_fullStr GPS Meteorology: With Focus On Climate Application
title_full_unstemmed GPS Meteorology: With Focus On Climate Application
title_sort gps meteorology: with focus on climate application
publishDate 2012
url https://research.chalmers.se/en/publication/157389
genre Fennoscandia
genre_facet Fennoscandia
op_relation https://research.chalmers.se/en/publication/157389
_version_ 1765997568644349952