Predicting global distributions of eukaryotic plankton communities from satellite data

International audience Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global pl...

Full description

Bibliographic Details
Published in:ISME Communications
Main Authors: Kaneko, Hiroto, Endo, Hisashi, Henry, Nicolas, Berney, Cédric, Mahé, Frédéric, Poulain, Julie, Labadie, Karine, Beluche, Odette, El Hourany, Roy, Acinas, Silvia, Babin, Marcel, Bork, Peer, Bowler, Chris, Cochrane, Guy, de Vargas, Colomban, Gorsky, Gabriel, Guidi, Lionel, Grimsley, Nigel, Hingamp, Pascal, Iudicone, Daniele, Jaillon, Olivier, Kandels, Stefanie, Karsenti, Eric, Not, Fabrice, Poulton, Nicole, Pesant, Stéphane, Sardet, Christian, Speich, Sabrina, Stemmann, Lars, Sullivan, Matthew, Sunagawa, Shinichi, Chaffron, Samuel, Wincker, Patrick, Nakamura, Ryosuke, Karp-Boss, Lee, Boss, Emmanuel, Tomii, Kentaro, Ogata, Hiroyuki
Other Authors: Global Oceans Systems Ecology & Evolution - Tara Oceans (GOSEE), Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Aix Marseille Université (AMU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Université de Toulon (UTLN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut de Recherche pour le Développement (IRD France-Nord )-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-European Molecular Biology Laboratory (EMBL)-École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université australe du Chili, Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04252462
https://hal.science/hal-04252462/document
https://hal.science/hal-04252462/file/s43705-023-00308-7.pdf
https://doi.org/10.1038/s43705-023-00308-7
id ftceafr:oai:HAL:hal-04252462v1
record_format openpolar
institution Open Polar
collection HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
op_collection_id ftceafr
language English
topic Biooceanography
Microbial ecology
[SDE]Environmental Sciences
spellingShingle Biooceanography
Microbial ecology
[SDE]Environmental Sciences
Kaneko, Hiroto
Endo, Hisashi
Henry, Nicolas
Berney, Cédric
Mahé, Frédéric
Poulain, Julie
Labadie, Karine
Beluche, Odette
El Hourany, Roy
Acinas, Silvia
Babin, Marcel
Bork, Peer
Bowler, Chris
Cochrane, Guy
de Vargas, Colomban
Gorsky, Gabriel
Guidi, Lionel
Grimsley, Nigel
Hingamp, Pascal
Iudicone, Daniele
Jaillon, Olivier
Kandels, Stefanie
Karsenti, Eric
Not, Fabrice
Poulton, Nicole
Pesant, Stéphane
Sardet, Christian
Speich, Sabrina
Stemmann, Lars
Sullivan, Matthew
Sunagawa, Shinichi
Chaffron, Samuel
Wincker, Patrick
Nakamura, Ryosuke
Karp-Boss, Lee
Boss, Emmanuel
Tomii, Kentaro
Ogata, Hiroyuki
Predicting global distributions of eukaryotic plankton communities from satellite data
topic_facet Biooceanography
Microbial ecology
[SDE]Environmental Sciences
description International audience Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a . The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.
author2 Global Oceans Systems Ecology & Evolution - Tara Oceans (GOSEE)
Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Aix Marseille Université (AMU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Université de Toulon (UTLN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut de Recherche pour le Développement (IRD France-Nord )-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-European Molecular Biology Laboratory (EMBL)-École Centrale de Nantes (Nantes Univ - ECN)
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université australe du Chili
Institut de biologie de l'ENS Paris (IBENS)
Département de Biologie - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Kaneko, Hiroto
Endo, Hisashi
Henry, Nicolas
Berney, Cédric
Mahé, Frédéric
Poulain, Julie
Labadie, Karine
Beluche, Odette
El Hourany, Roy
Acinas, Silvia
Babin, Marcel
Bork, Peer
Bowler, Chris
Cochrane, Guy
de Vargas, Colomban
Gorsky, Gabriel
Guidi, Lionel
Grimsley, Nigel
Hingamp, Pascal
Iudicone, Daniele
Jaillon, Olivier
Kandels, Stefanie
Karsenti, Eric
Not, Fabrice
Poulton, Nicole
Pesant, Stéphane
Sardet, Christian
Speich, Sabrina
Stemmann, Lars
Sullivan, Matthew
Sunagawa, Shinichi
Chaffron, Samuel
Wincker, Patrick
Nakamura, Ryosuke
Karp-Boss, Lee
Boss, Emmanuel
Tomii, Kentaro
Ogata, Hiroyuki
author_facet Kaneko, Hiroto
Endo, Hisashi
Henry, Nicolas
Berney, Cédric
Mahé, Frédéric
Poulain, Julie
Labadie, Karine
Beluche, Odette
El Hourany, Roy
Acinas, Silvia
Babin, Marcel
Bork, Peer
Bowler, Chris
Cochrane, Guy
de Vargas, Colomban
Gorsky, Gabriel
Guidi, Lionel
Grimsley, Nigel
Hingamp, Pascal
Iudicone, Daniele
Jaillon, Olivier
Kandels, Stefanie
Karsenti, Eric
Not, Fabrice
Poulton, Nicole
Pesant, Stéphane
Sardet, Christian
Speich, Sabrina
Stemmann, Lars
Sullivan, Matthew
Sunagawa, Shinichi
Chaffron, Samuel
Wincker, Patrick
Nakamura, Ryosuke
Karp-Boss, Lee
Boss, Emmanuel
Tomii, Kentaro
Ogata, Hiroyuki
author_sort Kaneko, Hiroto
title Predicting global distributions of eukaryotic plankton communities from satellite data
title_short Predicting global distributions of eukaryotic plankton communities from satellite data
title_full Predicting global distributions of eukaryotic plankton communities from satellite data
title_fullStr Predicting global distributions of eukaryotic plankton communities from satellite data
title_full_unstemmed Predicting global distributions of eukaryotic plankton communities from satellite data
title_sort predicting global distributions of eukaryotic plankton communities from satellite data
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04252462
https://hal.science/hal-04252462/document
https://hal.science/hal-04252462/file/s43705-023-00308-7.pdf
https://doi.org/10.1038/s43705-023-00308-7
genre Subarctic
genre_facet Subarctic
op_source EISSN: 2730-6151
ISME Communications
https://hal.science/hal-04252462
ISME Communications, 2023, 3 (1), pp.101. ⟨10.1038/s43705-023-00308-7⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/s43705-023-00308-7
hal-04252462
https://hal.science/hal-04252462
https://hal.science/hal-04252462/document
https://hal.science/hal-04252462/file/s43705-023-00308-7.pdf
doi:10.1038/s43705-023-00308-7
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1038/s43705-023-00308-7
container_title ISME Communications
container_volume 3
container_issue 1
_version_ 1790608676819566592
spelling ftceafr:oai:HAL:hal-04252462v1 2024-02-11T10:09:00+01:00 Predicting global distributions of eukaryotic plankton communities from satellite data Kaneko, Hiroto Endo, Hisashi Henry, Nicolas Berney, Cédric Mahé, Frédéric Poulain, Julie Labadie, Karine Beluche, Odette El Hourany, Roy Acinas, Silvia Babin, Marcel Bork, Peer Bowler, Chris Cochrane, Guy de Vargas, Colomban Gorsky, Gabriel Guidi, Lionel Grimsley, Nigel Hingamp, Pascal Iudicone, Daniele Jaillon, Olivier Kandels, Stefanie Karsenti, Eric Not, Fabrice Poulton, Nicole Pesant, Stéphane Sardet, Christian Speich, Sabrina Stemmann, Lars Sullivan, Matthew Sunagawa, Shinichi Chaffron, Samuel Wincker, Patrick Nakamura, Ryosuke Karp-Boss, Lee Boss, Emmanuel Tomii, Kentaro Ogata, Hiroyuki Global Oceans Systems Ecology & Evolution - Tara Oceans (GOSEE) Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Aix Marseille Université (AMU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Université de Toulon (UTLN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut de Recherche pour le Développement (IRD France-Nord )-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-European Molecular Biology Laboratory (EMBL)-École Centrale de Nantes (Nantes Univ - ECN) Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université australe du Chili Institut de biologie de l'ENS Paris (IBENS) Département de Biologie - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) 2023-12 https://hal.science/hal-04252462 https://hal.science/hal-04252462/document https://hal.science/hal-04252462/file/s43705-023-00308-7.pdf https://doi.org/10.1038/s43705-023-00308-7 en eng HAL CCSD Springer Nature info:eu-repo/semantics/altIdentifier/doi/10.1038/s43705-023-00308-7 hal-04252462 https://hal.science/hal-04252462 https://hal.science/hal-04252462/document https://hal.science/hal-04252462/file/s43705-023-00308-7.pdf doi:10.1038/s43705-023-00308-7 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess EISSN: 2730-6151 ISME Communications https://hal.science/hal-04252462 ISME Communications, 2023, 3 (1), pp.101. ⟨10.1038/s43705-023-00308-7⟩ Biooceanography Microbial ecology [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2023 ftceafr https://doi.org/10.1038/s43705-023-00308-7 2024-01-17T17:28:37Z International audience Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a . The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming. Article in Journal/Newspaper Subarctic HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives) ISME Communications 3 1