Global reductions in seafloor biomass in response to climate change
International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food,...
Published in: | Global Change Biology |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2014
|
Subjects: | |
Online Access: | https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf https://doi.org/10.1111/gcb.12480 |
id |
ftceafr:oai:HAL:hal-03112992v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives) |
op_collection_id |
ftceafr |
language |
English |
topic |
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
spellingShingle |
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography Jones, Daniel Yool, Andrew Wei, Chih‐lin Henson, Stephanie Ruhl, Henry Watson, Reg Gehlen, Marion Global reductions in seafloor biomass in response to climate change |
topic_facet |
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
description |
International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. |
author2 |
National Oceanography Centre Southampton (NOC) University of Southampton Memorial University of Newfoundland = Université Memorial de Terre-Neuve St. John's, Canada (MUN) University of Tasmania Hobart, Australia (UTAS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) |
format |
Article in Journal/Newspaper |
author |
Jones, Daniel Yool, Andrew Wei, Chih‐lin Henson, Stephanie Ruhl, Henry Watson, Reg Gehlen, Marion |
author_facet |
Jones, Daniel Yool, Andrew Wei, Chih‐lin Henson, Stephanie Ruhl, Henry Watson, Reg Gehlen, Marion |
author_sort |
Jones, Daniel |
title |
Global reductions in seafloor biomass in response to climate change |
title_short |
Global reductions in seafloor biomass in response to climate change |
title_full |
Global reductions in seafloor biomass in response to climate change |
title_fullStr |
Global reductions in seafloor biomass in response to climate change |
title_full_unstemmed |
Global reductions in seafloor biomass in response to climate change |
title_sort |
global reductions in seafloor biomass in response to climate change |
publisher |
HAL CCSD |
publishDate |
2014 |
url |
https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf https://doi.org/10.1111/gcb.12480 |
genre |
Northeast Atlantic |
genre_facet |
Northeast Atlantic |
op_source |
ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.science/hal-03112992 Global Change Biology, 2014, 20 (6), pp.1861-1872. ⟨10.1111/gcb.12480⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.12480 hal-03112992 https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf doi:10.1111/gcb.12480 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1111/gcb.12480 |
container_title |
Global Change Biology |
container_volume |
20 |
container_issue |
6 |
container_start_page |
1861 |
op_container_end_page |
1872 |
_version_ |
1810465972262273024 |
spelling |
ftceafr:oai:HAL:hal-03112992v1 2024-09-15T18:25:27+00:00 Global reductions in seafloor biomass in response to climate change Jones, Daniel Yool, Andrew Wei, Chih‐lin Henson, Stephanie Ruhl, Henry Watson, Reg Gehlen, Marion National Oceanography Centre Southampton (NOC) University of Southampton Memorial University of Newfoundland = Université Memorial de Terre-Neuve St. John's, Canada (MUN) University of Tasmania Hobart, Australia (UTAS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) 2014 https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf https://doi.org/10.1111/gcb.12480 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.12480 hal-03112992 https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf doi:10.1111/gcb.12480 info:eu-repo/semantics/OpenAccess ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.science/hal-03112992 Global Change Biology, 2014, 20 (6), pp.1861-1872. ⟨10.1111/gcb.12480⟩ [SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2014 ftceafr https://doi.org/10.1111/gcb.12480 2024-07-22T13:15:06Z International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. Article in Journal/Newspaper Northeast Atlantic HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives) Global Change Biology 20 6 1861 1872 |