Influence of large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast
International audience Marine air intrusions into Antarctica play a key role in high-precipitation events. Here we use shipboard observations of water vapor isotopologues between Australia and Syowa on the East Antarctic coast to elucidate the mechanism by which large-scale circulation influences ma...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://hal.science/hal-03104070 https://hal.science/hal-03104070/document https://hal.science/hal-03104070/file/2016GL070246.pdf https://doi.org/10.1002/2016GL070246 |
Summary: | International audience Marine air intrusions into Antarctica play a key role in high-precipitation events. Here we use shipboard observations of water vapor isotopologues between Australia and Syowa on the East Antarctic coast to elucidate the mechanism by which large-scale circulation influences marine air intrusions. The temporal isotopic variations at Syowa reflect the meridional movement of a marine air front. They are also associated with atmospheric circulation anomalies that enhance the southward movement of cyclones over the Southern Ocean. The relationship between large-scale circulation and the movement of the front is explained by northerly winds which, in association with cyclones, move toward the Antarctic coast and push marine air with isotopically enriched moisture into the inland covered by glacial air with depleted isotopic values. Future changes in large-scale circulation may have a significant impact on the frequency and intensity of marine air intrusion into Antarctica. |
---|