Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases

© 2015 Geological Society of America. The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O...

Full description

Bibliographic Details
Published in:Geology
Main Authors: Sumner, DY, Hawes, I, Mackey, TJ, Jungblut, AD, Doran, PT
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2015
Subjects:
Online Access:http://www.escholarship.org/uc/item/9gr788vv
id ftcdlib:qt9gr788vv
record_format openpolar
spelling ftcdlib:qt9gr788vv 2023-05-15T14:04:14+02:00 Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases Sumner, DY Hawes, I Mackey, TJ Jungblut, AD Doran, PT 887 - 890 2015-10-01 application/pdf http://www.escholarship.org/uc/item/9gr788vv english eng eScholarship, University of California qt9gr788vv http://www.escholarship.org/uc/item/9gr788vv public Sumner, DY; Hawes, I; Mackey, TJ; Jungblut, AD; & Doran, PT. (2015). Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology, 43(10), 887 - 890. doi:10.1130/G36966.1. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/9gr788vv article 2015 ftcdlib https://doi.org/10.1130/G36966.1 2018-06-29T22:51:41Z © 2015 Geological Society of America. The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O2 oases, or initiated just prior to the GOE. The biogeochemical dynamics of possible O2 oases have been poorly constrained due to the absence of modern analogs. However, cyanobacteria in microbial mats in a perennially anoxic region of Lake Fryxell, Antarctica, create a 1-2 mm O2-containing layer in the upper mat during summer, providing the first known modern analog for formation of benthic O2 oases. In Lake Fryxell, benthic cyanobacteria are present below the oxycline in the lake. Mat photosynthesis rates were slow due to low photon flux rate (1-2 μmol m-2 s-1) under thick ice cover, but photosynthetic O2 production was sufficient to sustain up to 50 μmol O2 L-1, sandwiched between anoxic overlying water and anoxic sediments. We hypothesize that Archean cyanobacteria could have similarly created O2 oases in benthic mats prior to the GOE. Analogous mats may have been at least partly responsible for geological evidence of oxidative weathering prior to the GOE, and habitats such as Lake Fryxell provide natural laboratories where the impact of benthic O2 oases on biogeochemical signatures can be investigated. Article in Journal/Newspaper Antarc* Antarctic Antarctica University of California: eScholarship Antarctic Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617) Lake Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617) Geology 43 10 887 890
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language English
description © 2015 Geological Society of America. The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O2 oases, or initiated just prior to the GOE. The biogeochemical dynamics of possible O2 oases have been poorly constrained due to the absence of modern analogs. However, cyanobacteria in microbial mats in a perennially anoxic region of Lake Fryxell, Antarctica, create a 1-2 mm O2-containing layer in the upper mat during summer, providing the first known modern analog for formation of benthic O2 oases. In Lake Fryxell, benthic cyanobacteria are present below the oxycline in the lake. Mat photosynthesis rates were slow due to low photon flux rate (1-2 μmol m-2 s-1) under thick ice cover, but photosynthetic O2 production was sufficient to sustain up to 50 μmol O2 L-1, sandwiched between anoxic overlying water and anoxic sediments. We hypothesize that Archean cyanobacteria could have similarly created O2 oases in benthic mats prior to the GOE. Analogous mats may have been at least partly responsible for geological evidence of oxidative weathering prior to the GOE, and habitats such as Lake Fryxell provide natural laboratories where the impact of benthic O2 oases on biogeochemical signatures can be investigated.
format Article in Journal/Newspaper
author Sumner, DY
Hawes, I
Mackey, TJ
Jungblut, AD
Doran, PT
spellingShingle Sumner, DY
Hawes, I
Mackey, TJ
Jungblut, AD
Doran, PT
Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
author_facet Sumner, DY
Hawes, I
Mackey, TJ
Jungblut, AD
Doran, PT
author_sort Sumner, DY
title Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
title_short Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
title_full Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
title_fullStr Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
title_full_unstemmed Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases
title_sort antarctic microbial mats: a modern analog for archean lacustrine oxygen oases
publisher eScholarship, University of California
publishDate 2015
url http://www.escholarship.org/uc/item/9gr788vv
op_coverage 887 - 890
long_lat ENVELOPE(163.183,163.183,-77.617,-77.617)
ENVELOPE(163.183,163.183,-77.617,-77.617)
geographic Antarctic
Fryxell
Lake Fryxell
geographic_facet Antarctic
Fryxell
Lake Fryxell
genre Antarc*
Antarctic
Antarctica
genre_facet Antarc*
Antarctic
Antarctica
op_source Sumner, DY; Hawes, I; Mackey, TJ; Jungblut, AD; & Doran, PT. (2015). Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology, 43(10), 887 - 890. doi:10.1130/G36966.1. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/9gr788vv
op_relation qt9gr788vv
http://www.escholarship.org/uc/item/9gr788vv
op_rights public
op_doi https://doi.org/10.1130/G36966.1
container_title Geology
container_volume 43
container_issue 10
container_start_page 887
op_container_end_page 890
_version_ 1766275263235096576