Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks

The TransCom 3 experiment was begun to explore the estimation of carbon sources and sinks via the inversion of simulated tracer transport. We build upon previous TransCom work by presenting the seasonal inverse results which provide estimates of carbon flux for 11 land and 11 ocean regions using 12...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Gurney, Kevin Robert, Law, Rachel M, Denning, A. Scott, Rayner, Peter J, Pak, Bernard C, Baker, David, Bousquet, Philippe, Bruhwiler, Lori, Chen, Yu-Han, Ciais, Philippe, Fung, Inez Y, Heimann, Martin, John, Jasmin, Maki, Takashi, Maksyutov, Shamil, Peylin, Philippe, Prather, Michael, Taguchi, Shoichi
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2004
Subjects:
Online Access:http://www.escholarship.org/uc/item/8ww0p090
id ftcdlib:qt8ww0p090
record_format openpolar
spelling ftcdlib:qt8ww0p090 2023-05-15T18:26:03+02:00 Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks Gurney, Kevin Robert Law, Rachel M Denning, A. Scott Rayner, Peter J Pak, Bernard C Baker, David Bousquet, Philippe Bruhwiler, Lori Chen, Yu-Han Ciais, Philippe Fung, Inez Y Heimann, Martin John, Jasmin Maki, Takashi Maksyutov, Shamil Peylin, Philippe Prather, Michael Taguchi, Shoichi n/a - n/a 2004-03-01 application/pdf http://www.escholarship.org/uc/item/8ww0p090 english eng eScholarship, University of California qt8ww0p090 http://www.escholarship.org/uc/item/8ww0p090 Attribution (CC BY): http://creativecommons.org/licenses/by/3.0/ CC-BY Gurney, Kevin Robert; Law, Rachel M; Denning, A. Scott; Rayner, Peter J; Pak, Bernard C; Baker, David; et al.(2004). Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles, 18(1), n/a - n/a. doi:10.1029/2003GB002111. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/8ww0p090 Physical Sciences and Mathematics annual variation atmospheric transport carbon cycle carbon dioxide carbon emission article 2004 ftcdlib https://doi.org/10.1029/2003GB002111 2016-04-02T18:30:08Z The TransCom 3 experiment was begun to explore the estimation of carbon sources and sinks via the inversion of simulated tracer transport. We build upon previous TransCom work by presenting the seasonal inverse results which provide estimates of carbon flux for 11 land and 11 ocean regions using 12 atmospheric transport models. The monthly fluxes represent the mean seasonal cycle for the 1992 to 1996 time period. The spread among the model results is larger than the average of their estimated flux uncertainty in the northern extratropics and vice versa in the tropical regions. In the northern land regions, the model spread is largest during the growing season. Compared to a seasonally balanced biosphere prior flux generated by the CASA model, we find significant changes to the carbon exchange in the European region with greater growing season net uptake which persists into the fall months. Both Boreal North America and Boreal Asia show lessened net uptake at the onset of the growing season with Boreal Asia also exhibiting greater peak growing season net uptake. Temperate Asia shows a dramatic springward shift in the peak timing of growing season net uptake relative to the neutral CASA flux while Temperate North America exhibits a broad flattening of the seasonal cycle. In most of the ocean regions, the inverse fluxes exhibit much greater seasonality than that implied by the ΔpCO2 derived fluxes though this may be due, in part, to misallocation of adjacent land flux. In the Southern Ocean, the austral spring and fall exhibits much less carbon uptake than implied by ΔpCO2 derived fluxes. Sensitivity testing indicates that the inverse estimates are not overly influenced by the prior flux choices. Considerable agreement exists between the model mean, annual mean results of this study and that of the previously published TransCom annual mean inversion. The differences that do exist are in poorly constrained regions and tend to exhibit compensatory fluxes in order to match the global mass constraint. The differences between the estimated fluxes and the prior model over the northern land regions could be due to the prior model respiration response to temperature. Significant phase differences, such as that in the Temperate Asia region, may be due to the limited observations for that region. Finally, differences in the boreal land regions between the prior model and the estimated fluxes may be a reflection of the timing of spring thaw and an imbalance in respiration versus photosynthesis Article in Journal/Newspaper Southern Ocean University of California: eScholarship Austral Southern Ocean Global Biogeochemical Cycles 18 1 n/a n/a
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language English
topic Physical Sciences and Mathematics
annual variation
atmospheric transport
carbon cycle
carbon dioxide
carbon emission
spellingShingle Physical Sciences and Mathematics
annual variation
atmospheric transport
carbon cycle
carbon dioxide
carbon emission
Gurney, Kevin Robert
Law, Rachel M
Denning, A. Scott
Rayner, Peter J
Pak, Bernard C
Baker, David
Bousquet, Philippe
Bruhwiler, Lori
Chen, Yu-Han
Ciais, Philippe
Fung, Inez Y
Heimann, Martin
John, Jasmin
Maki, Takashi
Maksyutov, Shamil
Peylin, Philippe
Prather, Michael
Taguchi, Shoichi
Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
topic_facet Physical Sciences and Mathematics
annual variation
atmospheric transport
carbon cycle
carbon dioxide
carbon emission
description The TransCom 3 experiment was begun to explore the estimation of carbon sources and sinks via the inversion of simulated tracer transport. We build upon previous TransCom work by presenting the seasonal inverse results which provide estimates of carbon flux for 11 land and 11 ocean regions using 12 atmospheric transport models. The monthly fluxes represent the mean seasonal cycle for the 1992 to 1996 time period. The spread among the model results is larger than the average of their estimated flux uncertainty in the northern extratropics and vice versa in the tropical regions. In the northern land regions, the model spread is largest during the growing season. Compared to a seasonally balanced biosphere prior flux generated by the CASA model, we find significant changes to the carbon exchange in the European region with greater growing season net uptake which persists into the fall months. Both Boreal North America and Boreal Asia show lessened net uptake at the onset of the growing season with Boreal Asia also exhibiting greater peak growing season net uptake. Temperate Asia shows a dramatic springward shift in the peak timing of growing season net uptake relative to the neutral CASA flux while Temperate North America exhibits a broad flattening of the seasonal cycle. In most of the ocean regions, the inverse fluxes exhibit much greater seasonality than that implied by the ΔpCO2 derived fluxes though this may be due, in part, to misallocation of adjacent land flux. In the Southern Ocean, the austral spring and fall exhibits much less carbon uptake than implied by ΔpCO2 derived fluxes. Sensitivity testing indicates that the inverse estimates are not overly influenced by the prior flux choices. Considerable agreement exists between the model mean, annual mean results of this study and that of the previously published TransCom annual mean inversion. The differences that do exist are in poorly constrained regions and tend to exhibit compensatory fluxes in order to match the global mass constraint. The differences between the estimated fluxes and the prior model over the northern land regions could be due to the prior model respiration response to temperature. Significant phase differences, such as that in the Temperate Asia region, may be due to the limited observations for that region. Finally, differences in the boreal land regions between the prior model and the estimated fluxes may be a reflection of the timing of spring thaw and an imbalance in respiration versus photosynthesis
format Article in Journal/Newspaper
author Gurney, Kevin Robert
Law, Rachel M
Denning, A. Scott
Rayner, Peter J
Pak, Bernard C
Baker, David
Bousquet, Philippe
Bruhwiler, Lori
Chen, Yu-Han
Ciais, Philippe
Fung, Inez Y
Heimann, Martin
John, Jasmin
Maki, Takashi
Maksyutov, Shamil
Peylin, Philippe
Prather, Michael
Taguchi, Shoichi
author_facet Gurney, Kevin Robert
Law, Rachel M
Denning, A. Scott
Rayner, Peter J
Pak, Bernard C
Baker, David
Bousquet, Philippe
Bruhwiler, Lori
Chen, Yu-Han
Ciais, Philippe
Fung, Inez Y
Heimann, Martin
John, Jasmin
Maki, Takashi
Maksyutov, Shamil
Peylin, Philippe
Prather, Michael
Taguchi, Shoichi
author_sort Gurney, Kevin Robert
title Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
title_short Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
title_full Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
title_fullStr Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
title_full_unstemmed Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks
title_sort transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks
publisher eScholarship, University of California
publishDate 2004
url http://www.escholarship.org/uc/item/8ww0p090
op_coverage n/a - n/a
geographic Austral
Southern Ocean
geographic_facet Austral
Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source Gurney, Kevin Robert; Law, Rachel M; Denning, A. Scott; Rayner, Peter J; Pak, Bernard C; Baker, David; et al.(2004). Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles, 18(1), n/a - n/a. doi:10.1029/2003GB002111. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/8ww0p090
op_relation qt8ww0p090
http://www.escholarship.org/uc/item/8ww0p090
op_rights Attribution (CC BY): http://creativecommons.org/licenses/by/3.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.1029/2003GB002111
container_title Global Biogeochemical Cycles
container_volume 18
container_issue 1
container_start_page n/a
op_container_end_page n/a
_version_ 1766207857678614528