Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals

Increased sampling of the ocean is imperative in today’s rapidly changing climate. In situ chlorophyll fluorescence data collected by northern elephant seals (Mirounga angustirostris) instrumented with oceanographic tags in the northeastern Pacific offer a supplement to other autonomous oceanographi...

Full description

Bibliographic Details
Main Author: Keates, Theresa
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: eScholarship, University of California 2018
Subjects:
Online Access:http://www.escholarship.org/uc/item/7pw8q8b8
id ftcdlib:qt7pw8q8b8
record_format openpolar
spelling ftcdlib:qt7pw8q8b8 2023-05-15T16:05:23+02:00 Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals Keates, Theresa 46 2018-01-01 application/pdf http://www.escholarship.org/uc/item/7pw8q8b8 en eng eScholarship, University of California http://www.escholarship.org/uc/item/7pw8q8b8 qt7pw8q8b8 Attribution (CC BY): http://creativecommons.org/licenses/by/3.0/ CC-BY Keates, Theresa. (2018). Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals. UC Santa Cruz: Ocean Sciences. Retrieved from: http://www.escholarship.org/uc/item/7pw8q8b8 Biological oceanography Aquatic sciences biologging chlorophyll fluorometer northern elephant seal dissertation 2018 ftcdlib 2018-07-27T22:51:27Z Increased sampling of the ocean is imperative in today’s rapidly changing climate. In situ chlorophyll fluorescence data collected by northern elephant seals (Mirounga angustirostris) instrumented with oceanographic tags in the northeastern Pacific offer a supplement to other autonomous oceanographic samplers. I carried out a series of cross calibrations to evaluate the quality of these chlorophyll data. I calibrated the fluorometers in Conductivity-Temperature-Depth-Fluorescence tags (CTDF tags, Sea Mammal Research Unit) in the laboratory using extractions of mixed algal cultures representative of the North Pacific and further validated these calibrations in a controlled field setting. CTDF tags were deployed on five adult female northern elephant seals in 2014 at Año Nuevo State Park in California, USA for 2 to 8 month long offshore foraging trips reaching 3,116 to 4,476 km offshore. These deployments yielded 1394 temperature, salinity, and chlorophyll fluorescence casts of at least 180 m depth. The instrumented elephant seals documented subsurface chlorophyll maxima below the first optical depth in 80.7% of casts. Evidence of fluorescence quenching during periods of high irradiance was inconsistent and did not introduce a bias to our results. I compared the in situ chlorophyll data to satellite derived values. Overlapping satellite chlorophyll data were available for 5.9 - 23.5% of the in situ seal-collected data points using matchup criteria ranging from 1 to 8 days and 5 to 10 km. In situ chlorophyll fluorescence readings were higher than overlapping satellite ocean color chlorophyll data by a factor of 1.53 to 4.96. In light of these cross-calibration results, I strongly recommend system specific calibration procedures for fluorometers sampling from autonomous platforms and urge consideration of errors in the sole use of satellite-derived chlorophyll data for ground-truthing This in situ chlorophyll dataset measures an Essential Ocean Variable (EOV) at low cost and can be a valuable resource to the broader scientific community. Doctoral or Postdoctoral Thesis Elephant Seal Elephant Seals University of California: eScholarship Pacific
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language English
topic Biological oceanography
Aquatic sciences
biologging
chlorophyll
fluorometer
northern elephant seal
spellingShingle Biological oceanography
Aquatic sciences
biologging
chlorophyll
fluorometer
northern elephant seal
Keates, Theresa
Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
topic_facet Biological oceanography
Aquatic sciences
biologging
chlorophyll
fluorometer
northern elephant seal
description Increased sampling of the ocean is imperative in today’s rapidly changing climate. In situ chlorophyll fluorescence data collected by northern elephant seals (Mirounga angustirostris) instrumented with oceanographic tags in the northeastern Pacific offer a supplement to other autonomous oceanographic samplers. I carried out a series of cross calibrations to evaluate the quality of these chlorophyll data. I calibrated the fluorometers in Conductivity-Temperature-Depth-Fluorescence tags (CTDF tags, Sea Mammal Research Unit) in the laboratory using extractions of mixed algal cultures representative of the North Pacific and further validated these calibrations in a controlled field setting. CTDF tags were deployed on five adult female northern elephant seals in 2014 at Año Nuevo State Park in California, USA for 2 to 8 month long offshore foraging trips reaching 3,116 to 4,476 km offshore. These deployments yielded 1394 temperature, salinity, and chlorophyll fluorescence casts of at least 180 m depth. The instrumented elephant seals documented subsurface chlorophyll maxima below the first optical depth in 80.7% of casts. Evidence of fluorescence quenching during periods of high irradiance was inconsistent and did not introduce a bias to our results. I compared the in situ chlorophyll data to satellite derived values. Overlapping satellite chlorophyll data were available for 5.9 - 23.5% of the in situ seal-collected data points using matchup criteria ranging from 1 to 8 days and 5 to 10 km. In situ chlorophyll fluorescence readings were higher than overlapping satellite ocean color chlorophyll data by a factor of 1.53 to 4.96. In light of these cross-calibration results, I strongly recommend system specific calibration procedures for fluorometers sampling from autonomous platforms and urge consideration of errors in the sole use of satellite-derived chlorophyll data for ground-truthing This in situ chlorophyll dataset measures an Essential Ocean Variable (EOV) at low cost and can be a valuable resource to the broader scientific community.
format Doctoral or Postdoctoral Thesis
author Keates, Theresa
author_facet Keates, Theresa
author_sort Keates, Theresa
title Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
title_short Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
title_full Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
title_fullStr Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
title_full_unstemmed Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals
title_sort chlorophyll measured by autonomous pinniped oceanographers: calibration and validation of in situ data collected by northern elephant seals
publisher eScholarship, University of California
publishDate 2018
url http://www.escholarship.org/uc/item/7pw8q8b8
op_coverage 46
geographic Pacific
geographic_facet Pacific
genre Elephant Seal
Elephant Seals
genre_facet Elephant Seal
Elephant Seals
op_source Keates, Theresa. (2018). Chlorophyll measured by autonomous pinniped oceanographers: Calibration and validation of in situ data collected by northern elephant seals. UC Santa Cruz: Ocean Sciences. Retrieved from: http://www.escholarship.org/uc/item/7pw8q8b8
op_relation http://www.escholarship.org/uc/item/7pw8q8b8
qt7pw8q8b8
op_rights Attribution (CC BY): http://creativecommons.org/licenses/by/3.0/
op_rightsnorm CC-BY
_version_ 1766401288013086720