Impacts of atmospheric nutrient inputs on marine biogeochemistry

The primary nutrients that limit marine phytoplankton growth rates include nitrogen (N), phosphorus (P), iron (Fe), and silicon (Si). Atmospheric transport and deposition provides a source for each of these nutrients to the oceans. We utilize an ocean biogeochemical model to examine the relative imp...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Krishnamurthy, Aparna, Moore, J. Keith, Mahowald, Natalie, Luo, Chao, Zender, Charles S
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2010
Subjects:
Online Access:http://www.escholarship.org/uc/item/4ww0512f
Description
Summary:The primary nutrients that limit marine phytoplankton growth rates include nitrogen (N), phosphorus (P), iron (Fe), and silicon (Si). Atmospheric transport and deposition provides a source for each of these nutrients to the oceans. We utilize an ocean biogeochemical model to examine the relative importance of these atmospheric inputs for ocean biogeochemistry and export production. In the current era, simulations with the biogeochemical elemental cycling ocean model suggest that globally, atmospheric Fe inputs could support roughly 50% of the Fe exported from the euphotic zone by sinking organic and inorganic particles. Variations in atmospheric iron inputs strongly impact spatial patterns of phytoplankton growth limitation and the areal extent of the high-nutrient, low-chlorophyll regions. Atmospheric inputs of N, Si, and P have smaller impacts, potentially accounting for 5.1%, 0.21%, and 0.12% of the biogenic export of these elements from the euphotic zone, respectively. Soluble Fe input from the atmosphere is sufficient to support most of the export production in many ocean regions, whether we use a spatially variable aerosol Fe solubility, or a globally constant 2% solubility. Regionally atmospheric N inputs can have significant impacts on marine biogeochemistry, potentially supporting >25% of the export production, an impact that is increasing due to human activities. Atmospheric Si and P inputs have only minimal impacts on marine ecosystem productivity and biogeochemistry, as these inputs are typically quite small relative to the flux of these nutrients from below the euphotic zone.