Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

© Author(s) 2016. A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particula...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Wang, W, Rinke, A, Moore, JC, Ji, D, Cui, X, Peng, S, Lawrence, DM, McGuire, AD, Burke, EJ, Chen, X, Decharme, B, Koven, C, MacDougall, A, Saito, K, Zhang, W, Alkama, R, Bohn, TJ, Ciais, P, Delire, C, Gouttevin, I, Hajima, T, Krinner, G, Lettenmaier, DP, Miller, PA, Smith, B, Sueyoshi, T, Sherstiukov, AB
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2016
Subjects:
Online Access:http://www.escholarship.org/uc/item/0ww7r1qx
id ftcdlib:qt0ww7r1qx
record_format openpolar
spelling ftcdlib:qt0ww7r1qx 2023-05-15T17:56:12+02:00 Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region Wang, W Rinke, A Moore, JC Ji, D Cui, X Peng, S Lawrence, DM McGuire, AD Burke, EJ Chen, X Decharme, B Koven, C MacDougall, A Saito, K Zhang, W Alkama, R Bohn, TJ Ciais, P Delire, C Gouttevin, I Hajima, T Krinner, G Lettenmaier, DP Miller, PA Smith, B Sueyoshi, T Sherstiukov, AB 1721 - 1737 2016-08-11 application/pdf http://www.escholarship.org/uc/item/0ww7r1qx english eng eScholarship, University of California qt0ww7r1qx http://www.escholarship.org/uc/item/0ww7r1qx public Wang, W; Rinke, A; Moore, JC; Ji, D; Cui, X; Peng, S; et al.(2016). Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 10(4), 1721 - 1737. doi:10.5194/tc-10-1721-2016. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/0ww7r1qx article 2016 ftcdlib https://doi.org/10.5194/tc-10-1721-2016 2018-09-14T22:51:32Z © Author(s) 2016. A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution. Article in Journal/Newspaper permafrost University of California: eScholarship The Cryosphere 10 4 1721 1737
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language English
description © Author(s) 2016. A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.
format Article in Journal/Newspaper
author Wang, W
Rinke, A
Moore, JC
Ji, D
Cui, X
Peng, S
Lawrence, DM
McGuire, AD
Burke, EJ
Chen, X
Decharme, B
Koven, C
MacDougall, A
Saito, K
Zhang, W
Alkama, R
Bohn, TJ
Ciais, P
Delire, C
Gouttevin, I
Hajima, T
Krinner, G
Lettenmaier, DP
Miller, PA
Smith, B
Sueyoshi, T
Sherstiukov, AB
spellingShingle Wang, W
Rinke, A
Moore, JC
Ji, D
Cui, X
Peng, S
Lawrence, DM
McGuire, AD
Burke, EJ
Chen, X
Decharme, B
Koven, C
MacDougall, A
Saito, K
Zhang, W
Alkama, R
Bohn, TJ
Ciais, P
Delire, C
Gouttevin, I
Hajima, T
Krinner, G
Lettenmaier, DP
Miller, PA
Smith, B
Sueyoshi, T
Sherstiukov, AB
Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
author_facet Wang, W
Rinke, A
Moore, JC
Ji, D
Cui, X
Peng, S
Lawrence, DM
McGuire, AD
Burke, EJ
Chen, X
Decharme, B
Koven, C
MacDougall, A
Saito, K
Zhang, W
Alkama, R
Bohn, TJ
Ciais, P
Delire, C
Gouttevin, I
Hajima, T
Krinner, G
Lettenmaier, DP
Miller, PA
Smith, B
Sueyoshi, T
Sherstiukov, AB
author_sort Wang, W
title Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_short Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_full Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_fullStr Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_full_unstemmed Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_sort evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
publisher eScholarship, University of California
publishDate 2016
url http://www.escholarship.org/uc/item/0ww7r1qx
op_coverage 1721 - 1737
genre permafrost
genre_facet permafrost
op_source Wang, W; Rinke, A; Moore, JC; Ji, D; Cui, X; Peng, S; et al.(2016). Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 10(4), 1721 - 1737. doi:10.5194/tc-10-1721-2016. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/0ww7r1qx
op_relation qt0ww7r1qx
http://www.escholarship.org/uc/item/0ww7r1qx
op_rights public
op_doi https://doi.org/10.5194/tc-10-1721-2016
container_title The Cryosphere
container_volume 10
container_issue 4
container_start_page 1721
op_container_end_page 1737
_version_ 1766164310549069824