From Models to Management: Oceanographic Processes Shaping the Spatial Patterns and Progression of Ocean Acidification and Hypoxia in the California Current System

The California Current System, situated off the US West Coast, experiences natural exposure to acidified and oxygen-poor conditions due to coastal upwelling, which brings low pH, low oxygen water from depth to the nearshore environment. The addition of anthropogenic ocean acidification and hypoxia (...

Full description

Bibliographic Details
Main Author: Cheresh, Julia
Other Authors: Fiechter, Jerome
Format: Thesis
Language:English
Published: eScholarship, University of California 2023
Subjects:
Online Access:https://escholarship.org/uc/item/9r00154r
Description
Summary:The California Current System, situated off the US West Coast, experiences natural exposure to acidified and oxygen-poor conditions due to coastal upwelling, which brings low pH, low oxygen water from depth to the nearshore environment. The addition of anthropogenic ocean acidification and hypoxia (OAH) is therefore pushing conditions below biological thresholds, resulting in a variety of harmful effects ranging from behavior impacts to shell dissolution and mortality. It is therefore important to characterize the progression of ocean acidification and hypoxia in the California Current, where exposure to corrosive and hypoxic conditions is spatially variable and episodic in nature, making it a challenge to describe these patterns and their biophysical drivers through observational data alone. Here, a high resolution (~3 km) coupled physical-biogeochemical model is used to characterize the recent and projected spatial and temporal patterns in exposure to reduced pH and oxygen conditions, along with their physical and biogeochemical drivers. Results from Chapter 1 demonstrate that historical (1988-2010) alongshore variability in pH and oxygen is driven by a complex interplay of upwelling and primary production, modulated by the alongshore and cross-shore regional circulation. Results from Chapter 2 establish that historical variability in the interannual severity of exposure to corrosive conditions is driven by combined changes in source water properties and upwelling intensity, respectively associated with decadal basin scale variability and interannual regional scale forcing. Chapters 3 and 4 utilize downscaled regional climate projections to investigate the future (2000-2100) progression of ocean acidification and hypoxia hot spots, the emergence of these features, and their implications for marine resource management. Results from Chapter 3 highlight that where and when hot spots and refugia for pH and oxygen emerge depends on the metrics used to quantify them. If one is managing for OAH and cares about where ...