Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)

We investigate by means of numerical simulation a planned year-long field test of depressurization-induced production from a permafrost-associated hydrate reservoir on the Alaska North Slope at the site of the recently drilled Hydrate-01 Stratigraphic Test Well. The main objective of this study is t...

Full description

Bibliographic Details
Main Authors: Moridis, George J, Reagan, Matthew T, Liu, Yongzan
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2022
Subjects:
Online Access:https://escholarship.org/uc/item/9nm0r2pj
id ftcdlib:oai:escholarship.org:ark:/13030/qt9nm0r2pj
record_format openpolar
spelling ftcdlib:oai:escholarship.org:ark:/13030/qt9nm0r2pj 2024-02-04T09:52:22+01:00 Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins) Moridis, George J Reagan, Matthew T Liu, Yongzan 3496 - 3525 2022-04-07 application/pdf https://escholarship.org/uc/item/9nm0r2pj unknown eScholarship, University of California qt9nm0r2pj https://escholarship.org/uc/item/9nm0r2pj public Energy & Fuels, vol 36, iss 7 Chemical Engineering Engineering Resources Engineering and Extractive Metallurgy Physical Chemistry (incl. Structural) Energy article 2022 ftcdlib 2024-01-08T19:06:10Z We investigate by means of numerical simulation a planned year-long field test of depressurization-induced production from a permafrost-associated hydrate reservoir on the Alaska North Slope at the site of the recently drilled Hydrate-01 Stratigraphic Test Well. The main objective of this study is to assess quantitatively the impact of temporary interruptions (well shut-ins) on the expected fluid production performance from the B1 Sand of the stratigraphic Unit B during controlled depressurization over different time scales, as well as on other relevant aspects of the system response that have the potential to significantly affect the design of the field test. We consider eight different cases of depressurization, including (a) rapid depressurization over a 60-day period to a terminal bottomhole pressure PWof 2.8 MPa and (b) a slower depressurization rate to a final PWof 0.6 MPa at the end of the year-long production test, in addition to (c) a multi-step depressurization regime and (d) a quasi-linear continuous depressurization strategy. The results of the study indicate that shut-ins obviously reduce gas release and production during and immediately after their occurrence, but their longer-term effects are strongly dependent on the depressurization regime and on the time of observation, covering the entire range of potential outcomes. Shut-ins (a) have a universally strong negative effect when quasi-linear depressurization is involved regardless of the length of the production period, and (b) have a strong positive effect in multi-step depressurization schemes that becomes apparent earlier for large initial pressure drops, but (c) can also appear to have practically no effect for slow stepwise depressurization at the end of the year-long production test. Shut-ins lead to a rapid reformation of hydrates, even to the point of disappearance of a free gas phase in the reservoir. Rapid depressurization regimes lead to early maximum rates of hydrate dissociation and gas production, while the maximum rates occur at ... Article in Journal/Newspaper Alaska North Slope north slope permafrost Alaska University of California: eScholarship
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Chemical Engineering
Engineering
Resources Engineering and Extractive Metallurgy
Physical Chemistry (incl. Structural)
Energy
spellingShingle Chemical Engineering
Engineering
Resources Engineering and Extractive Metallurgy
Physical Chemistry (incl. Structural)
Energy
Moridis, George J
Reagan, Matthew T
Liu, Yongzan
Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
topic_facet Chemical Engineering
Engineering
Resources Engineering and Extractive Metallurgy
Physical Chemistry (incl. Structural)
Energy
description We investigate by means of numerical simulation a planned year-long field test of depressurization-induced production from a permafrost-associated hydrate reservoir on the Alaska North Slope at the site of the recently drilled Hydrate-01 Stratigraphic Test Well. The main objective of this study is to assess quantitatively the impact of temporary interruptions (well shut-ins) on the expected fluid production performance from the B1 Sand of the stratigraphic Unit B during controlled depressurization over different time scales, as well as on other relevant aspects of the system response that have the potential to significantly affect the design of the field test. We consider eight different cases of depressurization, including (a) rapid depressurization over a 60-day period to a terminal bottomhole pressure PWof 2.8 MPa and (b) a slower depressurization rate to a final PWof 0.6 MPa at the end of the year-long production test, in addition to (c) a multi-step depressurization regime and (d) a quasi-linear continuous depressurization strategy. The results of the study indicate that shut-ins obviously reduce gas release and production during and immediately after their occurrence, but their longer-term effects are strongly dependent on the depressurization regime and on the time of observation, covering the entire range of potential outcomes. Shut-ins (a) have a universally strong negative effect when quasi-linear depressurization is involved regardless of the length of the production period, and (b) have a strong positive effect in multi-step depressurization schemes that becomes apparent earlier for large initial pressure drops, but (c) can also appear to have practically no effect for slow stepwise depressurization at the end of the year-long production test. Shut-ins lead to a rapid reformation of hydrates, even to the point of disappearance of a free gas phase in the reservoir. Rapid depressurization regimes lead to early maximum rates of hydrate dissociation and gas production, while the maximum rates occur at ...
format Article in Journal/Newspaper
author Moridis, George J
Reagan, Matthew T
Liu, Yongzan
author_facet Moridis, George J
Reagan, Matthew T
Liu, Yongzan
author_sort Moridis, George J
title Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
title_short Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
title_full Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
title_fullStr Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
title_full_unstemmed Numerical Simulations in Support of a Long-Term Test of Gas Production from Hydrate Accumulations on the Alaska North Slope: Reservoir Response to Interruptions of Production (Shut-Ins)
title_sort numerical simulations in support of a long-term test of gas production from hydrate accumulations on the alaska north slope: reservoir response to interruptions of production (shut-ins)
publisher eScholarship, University of California
publishDate 2022
url https://escholarship.org/uc/item/9nm0r2pj
op_coverage 3496 - 3525
genre Alaska North Slope
north slope
permafrost
Alaska
genre_facet Alaska North Slope
north slope
permafrost
Alaska
op_source Energy & Fuels, vol 36, iss 7
op_relation qt9nm0r2pj
https://escholarship.org/uc/item/9nm0r2pj
op_rights public
_version_ 1789971788940181504