Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign

Extensive measurements of black carbon (BC) aerosol were conducted in and near the North American Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft campaign in April and June-July 2008. We identify the pathways and mechanisms of tr...

Full description

Bibliographic Details
Main Authors: Matsui, H, Kondo, Y, Moteki, N, Takegawa, N, Sahu, LK, Zhao, Y, Fuelberg, HE, Sessions, WR, Diskin, G, Blake, DR, Wisthaler, A, Koike, M
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2011
Subjects:
Online Access:https://escholarship.org/uc/item/74d9d6f9
Description
Summary:Extensive measurements of black carbon (BC) aerosol were conducted in and near the North American Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft campaign in April and June-July 2008. We identify the pathways and mechanisms of transport of BC to the Arctic from the Asian continent using these data. The concentration, transport efficiency, and measured altitude of BC over the North American Arctic were highly dependent on season and origin of air parcels, e.g., biomass burning (BB) in Russia (Russian BB) and anthropogenic (AN) in East Asia (Asian AN). Russian BB air was mainly measured in the middle troposphere and caused maximum BC concentrations at this altitude in spring. The median BC concentration and transport efficiency of the Russian BB air were 270 ng m -3 (at STP) and 80% in spring and 20 ng m-3 and 4% in summer, respectively. Asian AN air was measured most frequently in the upper troposphere, with median values of 20 ng m-3 and 13% in spring and 5 ng m-3 and 0.8% in summer. These distinct differences are explained by differences in the transport mechanisms and accumulated precipitation along trajectories (APT), which is a measure of wet removal processes during transport. The transport of Russian BB air to the Arctic was nearly isentropic with slow ascent (low APT), while Asian AN air underwent strong uplift associated with warm conveyor belts (high APT). The APT values in summer were much larger than those in spring due to the increase in humidity in summer. These results show that the impact of BC emitted from AN sources in East Asia on the Arctic was very limited in both spring and summer. The BB emissions in Russia in spring are demonstrated to be the most important sources of BC transported to the North American Arctic. Copyright 2011 by the American Geophysical Union.