Density of GeV muons in air showers measured with IceTop.
We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distribution...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
eScholarship, University of California
2022
|
Subjects: | |
Online Access: | https://escholarship.org/uc/item/6vh0740w |
_version_ | 1821715772246851584 |
---|---|
author | Abbasi, R Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Alameddine, JM Alves, AA Amin, NM Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal V, A Barwick, SW Bastian, B Basu, V Baur, S Bay, R Beatty, JJ Becker, KH Becker Tjus, J Beise, J Bellenghi, C Benda, S Benzvi, S Berley, D Bernardini, E Besson, DZ Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, RT Busse, RS Campana, MA Carnie-Bronca, EG Chen, C Chen, Z Chirkin, D Choi, K Clark, BA Clark, K Classen, L Coleman, A Collin, GH Conrad, JM Coppin, P Correa, P Cowen, DF Cross, R Dappen, C Dave, P De Clercq, C Delaunay, JJ Delgado López, D Dembinski, H Deoskar, K Desai, A Desiati, P De Vries, KD De Wasseige, G De With, M Deyoung, T Diaz, A Díaz-Vélez, JC Dittmer, M Dujmovic, H Dunkman, M Duvernois, MA Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, PA Fan, KL Fazely, AR Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, AT Finley, C |
author_facet | Abbasi, R Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Alameddine, JM Alves, AA Amin, NM Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal V, A Barwick, SW Bastian, B Basu, V Baur, S Bay, R Beatty, JJ Becker, KH Becker Tjus, J Beise, J Bellenghi, C Benda, S Benzvi, S Berley, D Bernardini, E Besson, DZ Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, RT Busse, RS Campana, MA Carnie-Bronca, EG Chen, C Chen, Z Chirkin, D Choi, K Clark, BA Clark, K Classen, L Coleman, A Collin, GH Conrad, JM Coppin, P Correa, P Cowen, DF Cross, R Dappen, C Dave, P De Clercq, C Delaunay, JJ Delgado López, D Dembinski, H Deoskar, K Desai, A Desiati, P De Vries, KD De Wasseige, G De With, M Deyoung, T Diaz, A Díaz-Vélez, JC Dittmer, M Dujmovic, H Dunkman, M Duvernois, MA Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, PA Fan, KL Fazely, AR Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, AT Finley, C |
author_sort | Abbasi, R |
collection | University of California: eScholarship |
description | We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV. |
format | Article in Journal/Newspaper |
genre | South pole |
genre_facet | South pole |
geographic | South Pole |
geographic_facet | South Pole |
id | ftcdlib:oai:escholarship.org:ark:/13030/qt6vh0740w |
institution | Open Polar |
language | unknown |
op_collection_id | ftcdlib |
op_coverage | 032010 |
op_relation | qt6vh0740w https://escholarship.org/uc/item/6vh0740w |
op_rights | CC-BY |
op_source | Physical Review D: Particles, Fields, Gravitation and Cosmology, vol 106, iss 3 |
publishDate | 2022 |
publisher | eScholarship, University of California |
record_format | openpolar |
spelling | ftcdlib:oai:escholarship.org:ark:/13030/qt6vh0740w 2025-01-17T00:52:39+00:00 Density of GeV muons in air showers measured with IceTop. Abbasi, R Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Alameddine, JM Alves, AA Amin, NM Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal V, A Barwick, SW Bastian, B Basu, V Baur, S Bay, R Beatty, JJ Becker, KH Becker Tjus, J Beise, J Bellenghi, C Benda, S Benzvi, S Berley, D Bernardini, E Besson, DZ Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, RT Busse, RS Campana, MA Carnie-Bronca, EG Chen, C Chen, Z Chirkin, D Choi, K Clark, BA Clark, K Classen, L Coleman, A Collin, GH Conrad, JM Coppin, P Correa, P Cowen, DF Cross, R Dappen, C Dave, P De Clercq, C Delaunay, JJ Delgado López, D Dembinski, H Deoskar, K Desai, A Desiati, P De Vries, KD De Wasseige, G De With, M Deyoung, T Diaz, A Díaz-Vélez, JC Dittmer, M Dujmovic, H Dunkman, M Duvernois, MA Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, PA Fan, KL Fazely, AR Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, AT Finley, C 032010 2022-08-01 application/pdf https://escholarship.org/uc/item/6vh0740w unknown eScholarship, University of California qt6vh0740w https://escholarship.org/uc/item/6vh0740w CC-BY Physical Review D: Particles, Fields, Gravitation and Cosmology, vol 106, iss 3 Nuclear and Plasma Physics Particle and High Energy Physics Physical Sciences Astronomical and Space Sciences Atomic Molecular Nuclear Particle and Plasma Physics Quantum Physics Nuclear & Particles Physics Mathematical physics Astronomical sciences article 2022 ftcdlib 2023-12-25T19:05:44Z We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV. Article in Journal/Newspaper South pole University of California: eScholarship South Pole |
spellingShingle | Nuclear and Plasma Physics Particle and High Energy Physics Physical Sciences Astronomical and Space Sciences Atomic Molecular Nuclear Particle and Plasma Physics Quantum Physics Nuclear & Particles Physics Mathematical physics Astronomical sciences Abbasi, R Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Alameddine, JM Alves, AA Amin, NM Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal V, A Barwick, SW Bastian, B Basu, V Baur, S Bay, R Beatty, JJ Becker, KH Becker Tjus, J Beise, J Bellenghi, C Benda, S Benzvi, S Berley, D Bernardini, E Besson, DZ Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, RT Busse, RS Campana, MA Carnie-Bronca, EG Chen, C Chen, Z Chirkin, D Choi, K Clark, BA Clark, K Classen, L Coleman, A Collin, GH Conrad, JM Coppin, P Correa, P Cowen, DF Cross, R Dappen, C Dave, P De Clercq, C Delaunay, JJ Delgado López, D Dembinski, H Deoskar, K Desai, A Desiati, P De Vries, KD De Wasseige, G De With, M Deyoung, T Diaz, A Díaz-Vélez, JC Dittmer, M Dujmovic, H Dunkman, M Duvernois, MA Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, PA Fan, KL Fazely, AR Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, AT Finley, C Density of GeV muons in air showers measured with IceTop. |
title | Density of GeV muons in air showers measured with IceTop. |
title_full | Density of GeV muons in air showers measured with IceTop. |
title_fullStr | Density of GeV muons in air showers measured with IceTop. |
title_full_unstemmed | Density of GeV muons in air showers measured with IceTop. |
title_short | Density of GeV muons in air showers measured with IceTop. |
title_sort | density of gev muons in air showers measured with icetop. |
topic | Nuclear and Plasma Physics Particle and High Energy Physics Physical Sciences Astronomical and Space Sciences Atomic Molecular Nuclear Particle and Plasma Physics Quantum Physics Nuclear & Particles Physics Mathematical physics Astronomical sciences |
topic_facet | Nuclear and Plasma Physics Particle and High Energy Physics Physical Sciences Astronomical and Space Sciences Atomic Molecular Nuclear Particle and Plasma Physics Quantum Physics Nuclear & Particles Physics Mathematical physics Astronomical sciences |
url | https://escholarship.org/uc/item/6vh0740w |