Observations of seawater carbonate chemistry in the Southern California Current

The ocean has taken up roughly a quarter of the total anthropogenic carbon emissions (Gruber et al., 2019). This addition causes changes in carbonate system equilibrium, decreasing ocean pH, which impacts marine organisms, ecosystems, and humans reliant on marine resources (Doney et al., 2020). The...

Full description

Bibliographic Details
Main Author: Wolfe, Wiley
Other Authors: Martz, Todd R
Format: Thesis
Language:English
Published: eScholarship, University of California 2022
Subjects:
Online Access:https://escholarship.org/uc/item/5wk3b53z
Description
Summary:The ocean has taken up roughly a quarter of the total anthropogenic carbon emissions (Gruber et al., 2019). This addition causes changes in carbonate system equilibrium, decreasing ocean pH, which impacts marine organisms, ecosystems, and humans reliant on marine resources (Doney et al., 2020). The study of the changing carbonate chemistry and its impact on the ocean requires the refinement of measurement techniques, observational programs, models and the sharing of data. Chapter 1 focuses on measurement techniques by assessing the stability of tris pH buffer in artificial seawater stored in bags. These bagged reference materials can be used by both benchtop and autonomous instruments to aid in quality control of measurements of carbonate chemistry. Chapter 2 focuses on continued observation, with the oldest inorganic carbon time series in the Pacific. This time series in the Southern California Current helps confirm the rate of anthropogenic ocean acidification observed in other regions of the ocean. Chapter 3 focuses on models by using seasonal cycles determined in Chapter 2 to build a mixed layer carbon budget at the location of the time series. Chapter 4 focuses on the sharing of data by summarizing and publishing previously unavailable observations of carbonate chemistry in the Southern California Current going back as far as 1983.