Subglacial lake drainage detected beneath the Greenland ice sheet.
The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response--a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recentl...
Published in: | Nature Communications |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
eScholarship, University of California
2015
|
Subjects: | |
Online Access: | https://escholarship.org/uc/item/4v52x0xv https://escholarship.org/content/qt4v52x0xv/qt4v52x0xv.pdf https://doi.org/10.1038/ncomms9408 |
Summary: | The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response--a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future. |
---|