Fundamental Studies of CO2 Substitution in Methane Hydrate

The enormous energy reserve of methane gas stored in gas hydrate structures is substantially more than all known fossil fuel reserves around the world. Efficient extraction of methane from the hydrate cavity structures is still a technological challenge but the use of CO2 injection and substitution...

Full description

Bibliographic Details
Main Author: Saeidi, Navid
Other Authors: Dunn-Rankin, Derek
Format: Thesis
Language:English
Published: eScholarship, University of California 2022
Subjects:
Online Access:https://escholarship.org/uc/item/45b7173x
https://escholarship.org/content/qt45b7173x/qt45b7173x.pdf
id ftcdlib:oai:escholarship.org:ark:/13030/qt45b7173x
record_format openpolar
spelling ftcdlib:oai:escholarship.org:ark:/13030/qt45b7173x 2024-09-15T18:18:39+00:00 Fundamental Studies of CO2 Substitution in Methane Hydrate Saeidi, Navid Dunn-Rankin, Derek 2022-01-01 application/pdf https://escholarship.org/uc/item/45b7173x https://escholarship.org/content/qt45b7173x/qt45b7173x.pdf en eng eScholarship, University of California qt45b7173x https://escholarship.org/uc/item/45b7173x https://escholarship.org/content/qt45b7173x/qt45b7173x.pdf CC-BY-ND Environmental engineering etd 2022 ftcdlib 2024-06-28T06:28:22Z The enormous energy reserve of methane gas stored in gas hydrate structures is substantially more than all known fossil fuel reserves around the world. Efficient extraction of methane from the hydrate cavity structures is still a technological challenge but the use of CO2 injection and substitution is a potentially viable approach. Gas hydrates in sediments are in a state of stationary balance with their surroundings. They are not in thermodynamic equilibrium and competing phase transitions of hydrate dissociation and hydrate reformation determines the stationary situation. The specific objective of this research is to dictate the phase transition conditions that enhance the growth rate of CO2 hydrate and increase the dissociation rate of methane hydrate in porous media by understanding the behavior of surfactants in promoting the growth rate of CO2 hydrate experimentally. In addition, the investigation explores the addition of a small amount of nitrogen gas to increase permeability following dissociation of CH4 hydrate. The CO2-CH4 gas exchange concept is theoretically more efficient than any other methods for extracting methane from gas hydrate reservoirs but the theory has not previously been demonstrated experimentally. Furthermore, due to increased concerns regarding carbon dioxide emissions as a driver of global warming, CO2 hydrate formation may be a promising form of CO2 storage as well as an efficient strategy for CH4 recovery. New CO2 hydrate forms from injected CO2 and free liquid water in the porous media. When the CO2 hydrate forms, the released heat from this formation is directed through the water phase and causes CH4 hydrate to dissociate. The experimental results illustrate that 20 moles% N2 and 1 mole% NFM (N-formylmorpholine) with CO2 liquid injection is the most effective of the conditions tested for conversion between CO2/CH4 hydrates. Maximum conversion in this study was 88 moles% of CO2, and 2 moles% N2 taking the place of methane hydrate in large and small cavities. This research work ... Thesis Methane hydrate University of California: eScholarship
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language English
topic Environmental engineering
spellingShingle Environmental engineering
Saeidi, Navid
Fundamental Studies of CO2 Substitution in Methane Hydrate
topic_facet Environmental engineering
description The enormous energy reserve of methane gas stored in gas hydrate structures is substantially more than all known fossil fuel reserves around the world. Efficient extraction of methane from the hydrate cavity structures is still a technological challenge but the use of CO2 injection and substitution is a potentially viable approach. Gas hydrates in sediments are in a state of stationary balance with their surroundings. They are not in thermodynamic equilibrium and competing phase transitions of hydrate dissociation and hydrate reformation determines the stationary situation. The specific objective of this research is to dictate the phase transition conditions that enhance the growth rate of CO2 hydrate and increase the dissociation rate of methane hydrate in porous media by understanding the behavior of surfactants in promoting the growth rate of CO2 hydrate experimentally. In addition, the investigation explores the addition of a small amount of nitrogen gas to increase permeability following dissociation of CH4 hydrate. The CO2-CH4 gas exchange concept is theoretically more efficient than any other methods for extracting methane from gas hydrate reservoirs but the theory has not previously been demonstrated experimentally. Furthermore, due to increased concerns regarding carbon dioxide emissions as a driver of global warming, CO2 hydrate formation may be a promising form of CO2 storage as well as an efficient strategy for CH4 recovery. New CO2 hydrate forms from injected CO2 and free liquid water in the porous media. When the CO2 hydrate forms, the released heat from this formation is directed through the water phase and causes CH4 hydrate to dissociate. The experimental results illustrate that 20 moles% N2 and 1 mole% NFM (N-formylmorpholine) with CO2 liquid injection is the most effective of the conditions tested for conversion between CO2/CH4 hydrates. Maximum conversion in this study was 88 moles% of CO2, and 2 moles% N2 taking the place of methane hydrate in large and small cavities. This research work ...
author2 Dunn-Rankin, Derek
format Thesis
author Saeidi, Navid
author_facet Saeidi, Navid
author_sort Saeidi, Navid
title Fundamental Studies of CO2 Substitution in Methane Hydrate
title_short Fundamental Studies of CO2 Substitution in Methane Hydrate
title_full Fundamental Studies of CO2 Substitution in Methane Hydrate
title_fullStr Fundamental Studies of CO2 Substitution in Methane Hydrate
title_full_unstemmed Fundamental Studies of CO2 Substitution in Methane Hydrate
title_sort fundamental studies of co2 substitution in methane hydrate
publisher eScholarship, University of California
publishDate 2022
url https://escholarship.org/uc/item/45b7173x
https://escholarship.org/content/qt45b7173x/qt45b7173x.pdf
genre Methane hydrate
genre_facet Methane hydrate
op_relation qt45b7173x
https://escholarship.org/uc/item/45b7173x
https://escholarship.org/content/qt45b7173x/qt45b7173x.pdf
op_rights CC-BY-ND
_version_ 1810456735948734464