Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils

Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. Ho...

Full description

Bibliographic Details
Main Authors: Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A, Rich, Virginia I, Sullivan, Matthew B
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2019
Subjects:
Online Access:https://escholarship.org/uc/item/0vb5k8qg
id ftcdlib:oai:escholarship.org:ark:/13030/qt0vb5k8qg
record_format openpolar
spelling ftcdlib:oai:escholarship.org:ark:/13030/qt0vb5k8qg 2024-01-07T09:45:59+01:00 Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils Trubl, Gareth Roux, Simon Solonenko, Natalie Li, Yueh-Fen Bolduc, Benjamin Rodríguez-Ramos, Josué Eloe-Fadrosh, Emiley A Rich, Virginia I Sullivan, Matthew B e7265 2019-01-01 application/pdf https://escholarship.org/uc/item/0vb5k8qg unknown eScholarship, University of California qt0vb5k8qg https://escholarship.org/uc/item/0vb5k8qg public PeerJ, vol 7, iss 7 Microbiology Biological Sciences Life Below Water Soil viruses Viromes DNA extraction Organics ssDNA viruses dsDNA viruses Viromics Medical and Health Sciences article 2019 ftcdlib 2023-12-11T19:07:32Z Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1-2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S ... Article in Journal/Newspaper permafrost University of California: eScholarship
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Microbiology
Biological Sciences
Life Below Water
Soil viruses
Viromes
DNA extraction
Organics
ssDNA viruses
dsDNA viruses
Viromics
Medical and Health Sciences
spellingShingle Microbiology
Biological Sciences
Life Below Water
Soil viruses
Viromes
DNA extraction
Organics
ssDNA viruses
dsDNA viruses
Viromics
Medical and Health Sciences
Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A
Rich, Virginia I
Sullivan, Matthew B
Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
topic_facet Microbiology
Biological Sciences
Life Below Water
Soil viruses
Viromes
DNA extraction
Organics
ssDNA viruses
dsDNA viruses
Viromics
Medical and Health Sciences
description Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1-2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S ...
format Article in Journal/Newspaper
author Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A
Rich, Virginia I
Sullivan, Matthew B
author_facet Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A
Rich, Virginia I
Sullivan, Matthew B
author_sort Trubl, Gareth
title Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_short Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_fullStr Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_sort towards optimized viral metagenomes for double-stranded and single-stranded dna viruses from challenging soils
publisher eScholarship, University of California
publishDate 2019
url https://escholarship.org/uc/item/0vb5k8qg
op_coverage e7265
genre permafrost
genre_facet permafrost
op_source PeerJ, vol 7, iss 7
op_relation qt0vb5k8qg
https://escholarship.org/uc/item/0vb5k8qg
op_rights public
_version_ 1787427653662277632