Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica
Thwaites Glacier, the second largest ice stream in West Antarctica, drains an area of 166 500 ± 2000 km2 which accumulates 55 ± 5 Gt a-1 (or 60 ± 6 km3 ice a-1) into the Amundsen Sea, unrestrained by an ice shelf. Using interferometric synthetic-aperture radar (InSAR) data collected by the European...
Published in: | Journal of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
eScholarship, University of California
2001
|
Subjects: | |
Online Access: | https://escholarship.org/uc/item/0q22m94t https://escholarship.org/content/qt0q22m94t/qt0q22m94t.pdf https://doi.org/10.3189/172756501781832340 |
id |
ftcdlib:oai:escholarship.org:ark:/13030/qt0q22m94t |
---|---|
record_format |
openpolar |
spelling |
ftcdlib:oai:escholarship.org:ark:/13030/qt0q22m94t 2024-09-15T17:39:11+00:00 Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica Rignot, Eric 213 - 222 2001-01-01 application/pdf https://escholarship.org/uc/item/0q22m94t https://escholarship.org/content/qt0q22m94t/qt0q22m94t.pdf https://doi.org/10.3189/172756501781832340 unknown eScholarship, University of California qt0q22m94t https://escholarship.org/uc/item/0q22m94t https://escholarship.org/content/qt0q22m94t/qt0q22m94t.pdf doi:10.3189/172756501781832340 CC-BY Journal of Glaciology, vol 47, iss 157 Physical Geography and Environmental Geoscience Meteorology & Atmospheric Sciences article 2001 ftcdlib https://doi.org/10.3189/172756501781832340 2024-06-28T06:28:20Z Thwaites Glacier, the second largest ice stream in West Antarctica, drains an area of 166 500 ± 2000 km2 which accumulates 55 ± 5 Gt a-1 (or 60 ± 6 km3 ice a-1) into the Amundsen Sea, unrestrained by an ice shelf. Using interferometric synthetic-aperture radar (InSAR) data collected by the European Remote-sensing Satellites (ERS-1 and -2) in 1996, an output flux of 71 ± 7 Gt a-1 (or 77 ± 8 km3 ice a-1) is estimated at the grounding line, where ice thickness is deduced from hydrostatic equilibrium. A similar flux, 70 ± 7 Gt a-1 (or 76 ± 8 km3 ice a-1), is obtained at a gate located 20 km upstream, where ice thickness was measured in 1978 by ice-sounding radar. Total accumulation in between the two gates is 1.6 Gt a-1 or 1.8 km3 ice a-1. Ice discharge therefore exceeds mass accumulation by 30 ± 15%, and Thwaites Glacier must be thinning and retreating at present. The InSAR data show that the glacier floating ice tongue exerts no back pressure on the inland ice, calves into tabular icebergs along a significant fraction of its grounding line, and has a grounding-line thickness which exceeds a prior-calculated limit for stability. Glacier thinning is confirmed at the coast by the detection of a 1.4 ± 0.2 km retreat of its grounding line between 1992 and 1996 with InSAR, which implies 3.2 ± 0.6 m ice a-1 thinning at the glacier center and less near the sides. These results complement the decimeter-scale annual surface lowering observed with satellite radar altimetry several hundred km inland of the grounding line. The magnitude of ice thinning estimated at the coast, however, rules out temporal changes in accumulation as the explanation for surface lowering. Ice thinning must be due to changes in ice flow. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctica Ice Shelf Journal of Glaciology Thwaites Glacier West Antarctica University of California: eScholarship Journal of Glaciology 47 157 213 222 |
institution |
Open Polar |
collection |
University of California: eScholarship |
op_collection_id |
ftcdlib |
language |
unknown |
topic |
Physical Geography and Environmental Geoscience Meteorology & Atmospheric Sciences |
spellingShingle |
Physical Geography and Environmental Geoscience Meteorology & Atmospheric Sciences Rignot, Eric Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
topic_facet |
Physical Geography and Environmental Geoscience Meteorology & Atmospheric Sciences |
description |
Thwaites Glacier, the second largest ice stream in West Antarctica, drains an area of 166 500 ± 2000 km2 which accumulates 55 ± 5 Gt a-1 (or 60 ± 6 km3 ice a-1) into the Amundsen Sea, unrestrained by an ice shelf. Using interferometric synthetic-aperture radar (InSAR) data collected by the European Remote-sensing Satellites (ERS-1 and -2) in 1996, an output flux of 71 ± 7 Gt a-1 (or 77 ± 8 km3 ice a-1) is estimated at the grounding line, where ice thickness is deduced from hydrostatic equilibrium. A similar flux, 70 ± 7 Gt a-1 (or 76 ± 8 km3 ice a-1), is obtained at a gate located 20 km upstream, where ice thickness was measured in 1978 by ice-sounding radar. Total accumulation in between the two gates is 1.6 Gt a-1 or 1.8 km3 ice a-1. Ice discharge therefore exceeds mass accumulation by 30 ± 15%, and Thwaites Glacier must be thinning and retreating at present. The InSAR data show that the glacier floating ice tongue exerts no back pressure on the inland ice, calves into tabular icebergs along a significant fraction of its grounding line, and has a grounding-line thickness which exceeds a prior-calculated limit for stability. Glacier thinning is confirmed at the coast by the detection of a 1.4 ± 0.2 km retreat of its grounding line between 1992 and 1996 with InSAR, which implies 3.2 ± 0.6 m ice a-1 thinning at the glacier center and less near the sides. These results complement the decimeter-scale annual surface lowering observed with satellite radar altimetry several hundred km inland of the grounding line. The magnitude of ice thinning estimated at the coast, however, rules out temporal changes in accumulation as the explanation for surface lowering. Ice thinning must be due to changes in ice flow. |
format |
Article in Journal/Newspaper |
author |
Rignot, Eric |
author_facet |
Rignot, Eric |
author_sort |
Rignot, Eric |
title |
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
title_short |
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
title_full |
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
title_fullStr |
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
title_full_unstemmed |
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica |
title_sort |
evidence for rapid retreat and mass loss of thwaites glacier, west antarctica |
publisher |
eScholarship, University of California |
publishDate |
2001 |
url |
https://escholarship.org/uc/item/0q22m94t https://escholarship.org/content/qt0q22m94t/qt0q22m94t.pdf https://doi.org/10.3189/172756501781832340 |
op_coverage |
213 - 222 |
genre |
Amundsen Sea Antarc* Antarctica Ice Shelf Journal of Glaciology Thwaites Glacier West Antarctica |
genre_facet |
Amundsen Sea Antarc* Antarctica Ice Shelf Journal of Glaciology Thwaites Glacier West Antarctica |
op_source |
Journal of Glaciology, vol 47, iss 157 |
op_relation |
qt0q22m94t https://escholarship.org/uc/item/0q22m94t https://escholarship.org/content/qt0q22m94t/qt0q22m94t.pdf doi:10.3189/172756501781832340 |
op_rights |
CC-BY |
op_doi |
https://doi.org/10.3189/172756501781832340 |
container_title |
Journal of Glaciology |
container_volume |
47 |
container_issue |
157 |
container_start_page |
213 |
op_container_end_page |
222 |
_version_ |
1810478051049340928 |