A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska

Soil temperature has been recognized as a property that strongly influences a myriad of hydro-biogeochemical processes and reflects how various properties modulate the soil thermal flux. In spite of its importance, our ability to acquire soil temperature data with high spatial and temporal resolutio...

Full description

Bibliographic Details
Main Authors: Léger, E, Dafflon, B, Robert, Y, Ulrich, C, Peterson, JE, Biraud, SC, Romanovsky, VE, Hubbard, SS
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2019
Subjects:
Online Access:https://escholarship.org/uc/item/94p1m43n
id ftcdlib:oai:escholarship.org/ark:/13030/qt94p1m43n
record_format openpolar
spelling ftcdlib:oai:escholarship.org/ark:/13030/qt94p1m43n 2023-05-15T17:24:01+02:00 A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska Léger, E Dafflon, B Robert, Y Ulrich, C Peterson, JE Biraud, SC Romanovsky, VE Hubbard, SS 2853 - 2867 2019-11-07 application/pdf https://escholarship.org/uc/item/94p1m43n unknown eScholarship, University of California qt94p1m43n https://escholarship.org/uc/item/94p1m43n public Cryosphere, vol 13, iss 11 Meteorology & Atmospheric Sciences Oceanography Physical Geography and Environmental Geoscience article 2019 ftcdlib 2021-03-28T08:19:10Z Soil temperature has been recognized as a property that strongly influences a myriad of hydro-biogeochemical processes and reflects how various properties modulate the soil thermal flux. In spite of its importance, our ability to acquire soil temperature data with high spatial and temporal resolution and coverage is limited because of the high cost of equipment, the difficulties of deployment, and the complexities of data management. Here we propose a new strategy that we call distributed temperature profiling (DTP) for improving the characterization and monitoring near-surface thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We developed a prototype DTP system, which consists of inexpensive, low-impact, low-power, and vertically resolved temperature probes that independently and autonomously record soil temperature. The DTP system concept was tested by moving sequentially the system across the landscape to identify near-surface permafrost distribution in a discontinuous permafrost environment near Nome, Alaska, during the summertime. Results show that the DTP system enabled successful acquisition of vertically resolved profiles of summer soil temperature over the top 0.8 m at numerous locations. DTP also enabled high-resolution identification and lateral delineation of near-surface permafrost locations from surrounding zones with no permafrost or deep permafrost table locations overlain by a perennially thawed layer. The DTP strategy overcomes some of the limitations associated with - and complements the strengths of - borehole-based soil temperature sensing as well as fiber-optic distributed temperature sensing (FO-DTS) approaches. Combining DTP data with co-located topographic and vegetation maps obtained using unmanned aerial vehicle (UAV) and electrical resistivity tomography (ERT) data allowed us to identify correspondences between surface and subsurface property distribution and in particular between topography, vegetation, shallow soil properties, and near-surface permafrost. Finally, the results highlight the considerable value of the newly developed DTP strategy for investigating the significant variability in and complexity of subsurface thermal and hydrological regimes in discontinuous permafrost regions. Article in Journal/Newspaper Nome permafrost Alaska University of California: eScholarship
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Meteorology & Atmospheric Sciences
Oceanography
Physical Geography and Environmental Geoscience
spellingShingle Meteorology & Atmospheric Sciences
Oceanography
Physical Geography and Environmental Geoscience
Léger, E
Dafflon, B
Robert, Y
Ulrich, C
Peterson, JE
Biraud, SC
Romanovsky, VE
Hubbard, SS
A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
topic_facet Meteorology & Atmospheric Sciences
Oceanography
Physical Geography and Environmental Geoscience
description Soil temperature has been recognized as a property that strongly influences a myriad of hydro-biogeochemical processes and reflects how various properties modulate the soil thermal flux. In spite of its importance, our ability to acquire soil temperature data with high spatial and temporal resolution and coverage is limited because of the high cost of equipment, the difficulties of deployment, and the complexities of data management. Here we propose a new strategy that we call distributed temperature profiling (DTP) for improving the characterization and monitoring near-surface thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We developed a prototype DTP system, which consists of inexpensive, low-impact, low-power, and vertically resolved temperature probes that independently and autonomously record soil temperature. The DTP system concept was tested by moving sequentially the system across the landscape to identify near-surface permafrost distribution in a discontinuous permafrost environment near Nome, Alaska, during the summertime. Results show that the DTP system enabled successful acquisition of vertically resolved profiles of summer soil temperature over the top 0.8 m at numerous locations. DTP also enabled high-resolution identification and lateral delineation of near-surface permafrost locations from surrounding zones with no permafrost or deep permafrost table locations overlain by a perennially thawed layer. The DTP strategy overcomes some of the limitations associated with - and complements the strengths of - borehole-based soil temperature sensing as well as fiber-optic distributed temperature sensing (FO-DTS) approaches. Combining DTP data with co-located topographic and vegetation maps obtained using unmanned aerial vehicle (UAV) and electrical resistivity tomography (ERT) data allowed us to identify correspondences between surface and subsurface property distribution and in particular between topography, vegetation, shallow soil properties, and near-surface permafrost. Finally, the results highlight the considerable value of the newly developed DTP strategy for investigating the significant variability in and complexity of subsurface thermal and hydrological regimes in discontinuous permafrost regions.
format Article in Journal/Newspaper
author Léger, E
Dafflon, B
Robert, Y
Ulrich, C
Peterson, JE
Biraud, SC
Romanovsky, VE
Hubbard, SS
author_facet Léger, E
Dafflon, B
Robert, Y
Ulrich, C
Peterson, JE
Biraud, SC
Romanovsky, VE
Hubbard, SS
author_sort Léger, E
title A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
title_short A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
title_full A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
title_fullStr A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
title_full_unstemmed A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
title_sort distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of alaska
publisher eScholarship, University of California
publishDate 2019
url https://escholarship.org/uc/item/94p1m43n
op_coverage 2853 - 2867
genre Nome
permafrost
Alaska
genre_facet Nome
permafrost
Alaska
op_source Cryosphere, vol 13, iss 11
op_relation qt94p1m43n
https://escholarship.org/uc/item/94p1m43n
op_rights public
_version_ 1766114807222632448