Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons

Abstract. Ice-wedge polygons are common Arctic landforms. The future of these landforms in a warming climate depends on the bidirectional feedback between the rate of ice-wedge degradation and changes in hydrological characteristics. This work aims to better understand the relative roles of vertical...

Full description

Bibliographic Details
Main Authors: Wales, Nathan A, Gomez-Velez, Jesus D, Newman, Brent D, Wilson, Cathy J, Dafflon, Baptiste, Kneafsey, Timothy J, Wullschleger, Stan D
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2019
Subjects:
Online Access:https://escholarship.org/uc/item/8fg092ph
id ftcdlib:oai:escholarship.org/ark:/13030/qt8fg092ph
record_format openpolar
spelling ftcdlib:oai:escholarship.org/ark:/13030/qt8fg092ph 2023-05-15T15:09:21+02:00 Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons Wales, Nathan A Gomez-Velez, Jesus D Newman, Brent D Wilson, Cathy J Dafflon, Baptiste Kneafsey, Timothy J Wullschleger, Stan D 2019-04-01 https://escholarship.org/uc/item/8fg092ph unknown eScholarship, University of California qt8fg092ph https://escholarship.org/uc/item/8fg092ph public Environmental Engineering article 2019 ftcdlib 2021-07-05T17:07:46Z Abstract. Ice-wedge polygons are common Arctic landforms. The future of these landforms in a warming climate depends on the bidirectional feedback between the rate of ice-wedge degradation and changes in hydrological characteristics. This work aims to better understand the relative roles of vertical and horizontal water fluxes in the subsurface of polygonal landscapes, providing new insights and data to test and calibrate hydrology models. Field-scale investigations were conducted at an intensively-instrumented location on the Barrow Environmental Observatory (BEO) near Utqiaġvik, AK, USA. Using a conservative tracer, we examined controls of microtopography and the frost table on subsurface flow and transport within a low-centered and a high-centered polygon. Bromide tracer was applied at both polygons in July 2015 and transport was monitored through two thaw seasons. Samplers arrays placed in polygon centers, rims, and troughs were used to monitor tracer concentrations. In both polygons, the tracer first infiltrated vertically until encountering the frost table, then was transported horizontally. Horizontal flow occurred in more locations and at higher velocities of fluxes in the low-centered polygon than in the high-centered polygon. Preferential flow, influenced by frost table topography, was significant between polygon centers and troughs. Estimates of horizontal hydraulic conductivity were within the range of previous estimates of vertical conductivity, highlighting the importance of horizontal flow in these systems. This work forms a basis for understanding complexity of flow in polygonal landscapes. Article in Journal/Newspaper Arctic University of California: eScholarship Arctic
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Environmental Engineering
spellingShingle Environmental Engineering
Wales, Nathan A
Gomez-Velez, Jesus D
Newman, Brent D
Wilson, Cathy J
Dafflon, Baptiste
Kneafsey, Timothy J
Wullschleger, Stan D
Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
topic_facet Environmental Engineering
description Abstract. Ice-wedge polygons are common Arctic landforms. The future of these landforms in a warming climate depends on the bidirectional feedback between the rate of ice-wedge degradation and changes in hydrological characteristics. This work aims to better understand the relative roles of vertical and horizontal water fluxes in the subsurface of polygonal landscapes, providing new insights and data to test and calibrate hydrology models. Field-scale investigations were conducted at an intensively-instrumented location on the Barrow Environmental Observatory (BEO) near Utqiaġvik, AK, USA. Using a conservative tracer, we examined controls of microtopography and the frost table on subsurface flow and transport within a low-centered and a high-centered polygon. Bromide tracer was applied at both polygons in July 2015 and transport was monitored through two thaw seasons. Samplers arrays placed in polygon centers, rims, and troughs were used to monitor tracer concentrations. In both polygons, the tracer first infiltrated vertically until encountering the frost table, then was transported horizontally. Horizontal flow occurred in more locations and at higher velocities of fluxes in the low-centered polygon than in the high-centered polygon. Preferential flow, influenced by frost table topography, was significant between polygon centers and troughs. Estimates of horizontal hydraulic conductivity were within the range of previous estimates of vertical conductivity, highlighting the importance of horizontal flow in these systems. This work forms a basis for understanding complexity of flow in polygonal landscapes.
format Article in Journal/Newspaper
author Wales, Nathan A
Gomez-Velez, Jesus D
Newman, Brent D
Wilson, Cathy J
Dafflon, Baptiste
Kneafsey, Timothy J
Wullschleger, Stan D
author_facet Wales, Nathan A
Gomez-Velez, Jesus D
Newman, Brent D
Wilson, Cathy J
Dafflon, Baptiste
Kneafsey, Timothy J
Wullschleger, Stan D
author_sort Wales, Nathan A
title Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
title_short Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
title_full Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
title_fullStr Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
title_full_unstemmed Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons
title_sort understanding the relative importance of vertical and horizontal flow in ice-wedge polygons
publisher eScholarship, University of California
publishDate 2019
url https://escholarship.org/uc/item/8fg092ph
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation qt8fg092ph
https://escholarship.org/uc/item/8fg092ph
op_rights public
_version_ 1766340559659597824