Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.

Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial...

Full description

Bibliographic Details
Main Authors: Schilt, Adrian, Brook, Edward J, Bauska, Thomas K, Baggenstos, Daniel, Fischer, Hubertus, Joos, Fortunat, Petrenko, Vasilii V, Schaefer, Hinrich, Schmitt, Jochen, Severinghaus, Jeffrey P, Spahni, Renato, Stocker, Thomas F
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2014
Subjects:
Online Access:https://escholarship.org/uc/item/70v807md
id ftcdlib:oai:escholarship.org/ark:/13030/qt70v807md
record_format openpolar
spelling ftcdlib:oai:escholarship.org/ark:/13030/qt70v807md 2023-05-15T13:43:52+02:00 Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Schilt, Adrian Brook, Edward J Bauska, Thomas K Baggenstos, Daniel Fischer, Hubertus Joos, Fortunat Petrenko, Vasilii V Schaefer, Hinrich Schmitt, Jochen Severinghaus, Jeffrey P Spahni, Renato Stocker, Thomas F 234 - 237 2014-12-01 application/pdf https://escholarship.org/uc/item/70v807md unknown eScholarship, University of California qt70v807md https://escholarship.org/uc/item/70v807md public Nature, vol 516, iss 7530 Nitrous Oxide Nitrogen Isotopes Oxygen Isotopes Temperature Atmosphere Rain Ice Cover Time Factors History Ancient Antarctic Regions Global Warming Aquatic Organisms General Science & Technology article 2014 ftcdlib 2020-09-06T10:17:24Z Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming. Article in Journal/Newspaper Antarc* Antarctic Antarctica Taylor Glacier University of California: eScholarship Antarctic Taylor Glacier ENVELOPE(162.167,162.167,-77.733,-77.733)
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Nitrous Oxide
Nitrogen Isotopes
Oxygen Isotopes
Temperature
Atmosphere
Rain
Ice Cover
Time Factors
History
Ancient
Antarctic Regions
Global Warming
Aquatic Organisms
General Science & Technology
spellingShingle Nitrous Oxide
Nitrogen Isotopes
Oxygen Isotopes
Temperature
Atmosphere
Rain
Ice Cover
Time Factors
History
Ancient
Antarctic Regions
Global Warming
Aquatic Organisms
General Science & Technology
Schilt, Adrian
Brook, Edward J
Bauska, Thomas K
Baggenstos, Daniel
Fischer, Hubertus
Joos, Fortunat
Petrenko, Vasilii V
Schaefer, Hinrich
Schmitt, Jochen
Severinghaus, Jeffrey P
Spahni, Renato
Stocker, Thomas F
Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
topic_facet Nitrous Oxide
Nitrogen Isotopes
Oxygen Isotopes
Temperature
Atmosphere
Rain
Ice Cover
Time Factors
History
Ancient
Antarctic Regions
Global Warming
Aquatic Organisms
General Science & Technology
description Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming.
format Article in Journal/Newspaper
author Schilt, Adrian
Brook, Edward J
Bauska, Thomas K
Baggenstos, Daniel
Fischer, Hubertus
Joos, Fortunat
Petrenko, Vasilii V
Schaefer, Hinrich
Schmitt, Jochen
Severinghaus, Jeffrey P
Spahni, Renato
Stocker, Thomas F
author_facet Schilt, Adrian
Brook, Edward J
Bauska, Thomas K
Baggenstos, Daniel
Fischer, Hubertus
Joos, Fortunat
Petrenko, Vasilii V
Schaefer, Hinrich
Schmitt, Jochen
Severinghaus, Jeffrey P
Spahni, Renato
Stocker, Thomas F
author_sort Schilt, Adrian
title Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
title_short Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
title_full Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
title_fullStr Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
title_full_unstemmed Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation.
title_sort isotopic constraints on marine and terrestrial n2o emissions during the last deglaciation.
publisher eScholarship, University of California
publishDate 2014
url https://escholarship.org/uc/item/70v807md
op_coverage 234 - 237
long_lat ENVELOPE(162.167,162.167,-77.733,-77.733)
geographic Antarctic
Taylor Glacier
geographic_facet Antarctic
Taylor Glacier
genre Antarc*
Antarctic
Antarctica
Taylor Glacier
genre_facet Antarc*
Antarctic
Antarctica
Taylor Glacier
op_source Nature, vol 516, iss 7530
op_relation qt70v807md
https://escholarship.org/uc/item/70v807md
op_rights public
_version_ 1766194537453060096