Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble

Because of limited high-quality satellite and in situ observations, less attention has been given to the trends in Arctic sea ice thickness and therefore sea ice volume than to the trends in sea ice extent. This study evaluates the spatial and temporal variability in Arctic sea ice thickness using t...

Full description

Bibliographic Details
Main Authors: Labe, Z, Magnusdottir, G, Stern, H
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2018
Subjects:
Online Access:https://escholarship.org/uc/item/54b9c1rk
Description
Summary:Because of limited high-quality satellite and in situ observations, less attention has been given to the trends in Arctic sea ice thickness and therefore sea ice volume than to the trends in sea ice extent. This study evaluates the spatial and temporal variability in Arctic sea ice thickness using the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Additionally, the Community Earth System Model Large Ensemble Project (LENS) is used to quantify the forced response and internal variability in the model. A dipole spatial pattern of sea ice thickness variability is shown in both PIOMAS and LENS with opposite signs of polarity between the East Siberian Sea and near the Fram Strait. As future sea ice thins, this dipole structure of variability is reduced, and the largest interannual variability is found only along the northern Greenland coastline. Under a high-emissions scenario (RCP8.5) projection, average September sea ice thickness falls below 0.5 m by the end of the twenty-first century. However, a regional analysis shows internal variability contributes to an uncertainty of 10 to 20 years for the timing of the first September sea ice thickness less than 0.5 m in the marginal seas.