Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems

Hydrothermal processes that lead to REE fractionation and redistribution are important for understanding water-rock interactions in geothermal energy resources and mineral deposits, and for determining how submarine hydrothermal activity affects the composition of oceanic crust. Much previous work o...

Full description

Bibliographic Details
Main Authors: Fowler, APG, Zierenberg, RA, Reed, MH, Palandri, J, Óskarsson, F, Gunnarsson, I
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2019
Subjects:
Online Access:https://escholarship.org/uc/item/4687r8sd
id ftcdlib:oai:escholarship.org/ark:/13030/qt4687r8sd
record_format openpolar
spelling ftcdlib:oai:escholarship.org/ark:/13030/qt4687r8sd 2023-05-15T16:52:58+02:00 Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems Fowler, APG Zierenberg, RA Reed, MH Palandri, J Óskarsson, F Gunnarsson, I 2019-01-01 application/pdf https://escholarship.org/uc/item/4687r8sd unknown eScholarship, University of California qt4687r8sd https://escholarship.org/uc/item/4687r8sd public Rare earth elements Boiling Geothermal Hydrothermal Geochemical modeling Aqueous speciation Apatite partitioning Geochemistry Geology Physical Geography and Environmental Geoscience Geochemistry & Geophysics article 2019 ftcdlib 2021-06-28T17:07:24Z Hydrothermal processes that lead to REE fractionation and redistribution are important for understanding water-rock interactions in geothermal energy resources and mineral deposits, and for determining how submarine hydrothermal activity affects the composition of oceanic crust. Much previous work on REE transport and deposition has focused on submarine hydrothermal vents. We report REE concentrations in boiled fluids sampled from five subaerial, basalt-hosted geothermal fields, and explore controls on aqueous REE concentrations by ligand complexation and mineral supersaturation. Samples that boiled at pressures between 0.8 and 2.83 MPa were obtained from the Reykjanes, Svartsengi, Hellisheidi, and Nesjavellir geothermal systems in Iceland, and the Puna geothermal system in Hawaii. For comparison, we also report REE concentrations in hydrothermal fluids from the sediment hosted submarine Middle Valley hydrothermal system, which boiled at >250 MPa. The pH(25°C) values of the sampled subaerial geothermal fluids range from 3.94 to 6.77, and Cl concentrations range from near seawater (502 mmol/kg) to dilute (1.9 mmol/kg). La, Ce and Eu are the only REE present at levels above 5 picomole/kg (pmol/kg) in the boiled geothermal fluids; and there are notable CI chondrite normalized La and Eu anomalies in the saline fluids. REE concentrations in Middle Valley hydrothermal fluids fall within the typical range reported for submarine hydrothermal fluids and have around two orders of magnitude higher REE than the boiled subaerial geothermal fluids. Bulk samples of precipitates in pipes from the Reykjanes geothermal system have detectable REE, confirming that downhole fluids have lost REE during boiling and production of fluids for geothermal energy. Isenthalpic boiling models show that the proportions of La and Eu chloride complexes increase relative to other aqueous species as boiling progresses, attenuating the incorporation of La and Eu into precipitated well scale solids. Fluorapatite is calculated to precipitate on boiling of low pH and saline fluids and calcite is calculated to precipitate from dilute and near-neutral pH fluids, and these minerals likely sequester REE in boiled subaerial fluids. Submarine hydrothermal fluids are constrained to boiling at higher temperatures than subaerial geothermal fluids owing to pressure from overlying cold seawater, therefore secondary minerals and solids that incorporate REE are not extensively precipitated and REE concentrations in the fluids are higher. Article in Journal/Newspaper Iceland University of California: eScholarship Nesjavellir ENVELOPE(-21.251,-21.251,64.115,64.115) Reykjanes ENVELOPE(-22.250,-22.250,65.467,65.467)
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
topic Rare earth elements
Boiling
Geothermal
Hydrothermal
Geochemical modeling
Aqueous speciation
Apatite partitioning
Geochemistry
Geology
Physical Geography and Environmental Geoscience
Geochemistry & Geophysics
spellingShingle Rare earth elements
Boiling
Geothermal
Hydrothermal
Geochemical modeling
Aqueous speciation
Apatite partitioning
Geochemistry
Geology
Physical Geography and Environmental Geoscience
Geochemistry & Geophysics
Fowler, APG
Zierenberg, RA
Reed, MH
Palandri, J
Óskarsson, F
Gunnarsson, I
Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
topic_facet Rare earth elements
Boiling
Geothermal
Hydrothermal
Geochemical modeling
Aqueous speciation
Apatite partitioning
Geochemistry
Geology
Physical Geography and Environmental Geoscience
Geochemistry & Geophysics
description Hydrothermal processes that lead to REE fractionation and redistribution are important for understanding water-rock interactions in geothermal energy resources and mineral deposits, and for determining how submarine hydrothermal activity affects the composition of oceanic crust. Much previous work on REE transport and deposition has focused on submarine hydrothermal vents. We report REE concentrations in boiled fluids sampled from five subaerial, basalt-hosted geothermal fields, and explore controls on aqueous REE concentrations by ligand complexation and mineral supersaturation. Samples that boiled at pressures between 0.8 and 2.83 MPa were obtained from the Reykjanes, Svartsengi, Hellisheidi, and Nesjavellir geothermal systems in Iceland, and the Puna geothermal system in Hawaii. For comparison, we also report REE concentrations in hydrothermal fluids from the sediment hosted submarine Middle Valley hydrothermal system, which boiled at >250 MPa. The pH(25°C) values of the sampled subaerial geothermal fluids range from 3.94 to 6.77, and Cl concentrations range from near seawater (502 mmol/kg) to dilute (1.9 mmol/kg). La, Ce and Eu are the only REE present at levels above 5 picomole/kg (pmol/kg) in the boiled geothermal fluids; and there are notable CI chondrite normalized La and Eu anomalies in the saline fluids. REE concentrations in Middle Valley hydrothermal fluids fall within the typical range reported for submarine hydrothermal fluids and have around two orders of magnitude higher REE than the boiled subaerial geothermal fluids. Bulk samples of precipitates in pipes from the Reykjanes geothermal system have detectable REE, confirming that downhole fluids have lost REE during boiling and production of fluids for geothermal energy. Isenthalpic boiling models show that the proportions of La and Eu chloride complexes increase relative to other aqueous species as boiling progresses, attenuating the incorporation of La and Eu into precipitated well scale solids. Fluorapatite is calculated to precipitate on boiling of low pH and saline fluids and calcite is calculated to precipitate from dilute and near-neutral pH fluids, and these minerals likely sequester REE in boiled subaerial fluids. Submarine hydrothermal fluids are constrained to boiling at higher temperatures than subaerial geothermal fluids owing to pressure from overlying cold seawater, therefore secondary minerals and solids that incorporate REE are not extensively precipitated and REE concentrations in the fluids are higher.
format Article in Journal/Newspaper
author Fowler, APG
Zierenberg, RA
Reed, MH
Palandri, J
Óskarsson, F
Gunnarsson, I
author_facet Fowler, APG
Zierenberg, RA
Reed, MH
Palandri, J
Óskarsson, F
Gunnarsson, I
author_sort Fowler, APG
title Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
title_short Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
title_full Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
title_fullStr Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
title_full_unstemmed Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
title_sort rare earth element systematics in boiled fluids from basalt-hosted geothermal systems
publisher eScholarship, University of California
publishDate 2019
url https://escholarship.org/uc/item/4687r8sd
long_lat ENVELOPE(-21.251,-21.251,64.115,64.115)
ENVELOPE(-22.250,-22.250,65.467,65.467)
geographic Nesjavellir
Reykjanes
geographic_facet Nesjavellir
Reykjanes
genre Iceland
genre_facet Iceland
op_relation qt4687r8sd
https://escholarship.org/uc/item/4687r8sd
op_rights public
_version_ 1766043469800800256