Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations

Ten multi-hour atmospheric dispersion SF6 tracer experiments were conducted during October and November of 1987 near a large oil gathering facility in the Prudhoe Bay, Alaska, oilfield reservation. The purpose of this study was to investigate dispersion under arctic conditions and in situations wher...

Full description

Bibliographic Details
Main Authors: Guenther, A, Lamb, B, Allwine, E
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 1990
Subjects:
Online Access:https://escholarship.org/uc/item/3b07d4vq
id ftcdlib:oai:escholarship.org/ark:/13030/qt3b07d4vq
record_format openpolar
spelling ftcdlib:oai:escholarship.org/ark:/13030/qt3b07d4vq 2023-05-15T14:56:55+02:00 Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations Guenther, A Lamb, B Allwine, E 2329 - 2347 1990-01-01 application/pdf https://escholarship.org/uc/item/3b07d4vq unknown eScholarship, University of California qt3b07d4vq https://escholarship.org/uc/item/3b07d4vq CC-BY CC-BY Atmospheric Environment Part A, General Topics, vol 24, iss 9 article 1990 ftcdlib 2021-06-21T17:05:24Z Ten multi-hour atmospheric dispersion SF6 tracer experiments were conducted during October and November of 1987 near a large oil gathering facility in the Prudhoe Bay, Alaska, oilfield reservation. The purpose of this study was to investigate dispersion under arctic conditions and in situations where building-generated airflow disturbances dominate downwind distributions of ground level pollutant concentrations. This was accomplished with a network of micrometeorological instruments, portable syringe tracer samplers, continuous tracer analyzers, and infrared visualization of near source plume behavior. Atmospheric stability and wind speed profiles at this arctic site are influenced by the smooth (surface roughness = 0.03 cm), snow covered tundra surface which receives negligible levels of solar isolation in winter. The dispersion of pollutants emitted from sources within the oil gathering facility, however, is dominated by the influence of nearby buildings when high winds generate elevated ground level concentrations. An order of magnitude increase in maximum ground level concentration was observed as wind speeds increased from 5 to 8 m s-1 and another order of magnitude increase was observed as winds increased from 8 to 16 m s-1. Variation in maximum concentrations was also observed with changes in wind direction. Vertical plume diffusion (σz) near the buildings was a factor of 2-3 greater than that observed in open terrain and was dependent on both wind speed and the projected building width and location of nearby buildings. Wind tunnel tracer distributions for east winds agree with field observations but also indicate that a significant increase in plume downwash occurs with other wind directions. Concentration distributions were calculated using several versions of the Industrial Source Complex (ISC) model. Model estimates of ground level concentrations were within a factor of three depending on wind direction. The model predictions are extremely sensitive to the ratio of plume height to vertical plume diffusion which is significantly influenced by a complex aerodynamic wake in the field. © 1990. Article in Journal/Newspaper Arctic Prudhoe Bay Tundra Alaska University of California: eScholarship Arctic
institution Open Polar
collection University of California: eScholarship
op_collection_id ftcdlib
language unknown
description Ten multi-hour atmospheric dispersion SF6 tracer experiments were conducted during October and November of 1987 near a large oil gathering facility in the Prudhoe Bay, Alaska, oilfield reservation. The purpose of this study was to investigate dispersion under arctic conditions and in situations where building-generated airflow disturbances dominate downwind distributions of ground level pollutant concentrations. This was accomplished with a network of micrometeorological instruments, portable syringe tracer samplers, continuous tracer analyzers, and infrared visualization of near source plume behavior. Atmospheric stability and wind speed profiles at this arctic site are influenced by the smooth (surface roughness = 0.03 cm), snow covered tundra surface which receives negligible levels of solar isolation in winter. The dispersion of pollutants emitted from sources within the oil gathering facility, however, is dominated by the influence of nearby buildings when high winds generate elevated ground level concentrations. An order of magnitude increase in maximum ground level concentration was observed as wind speeds increased from 5 to 8 m s-1 and another order of magnitude increase was observed as winds increased from 8 to 16 m s-1. Variation in maximum concentrations was also observed with changes in wind direction. Vertical plume diffusion (σz) near the buildings was a factor of 2-3 greater than that observed in open terrain and was dependent on both wind speed and the projected building width and location of nearby buildings. Wind tunnel tracer distributions for east winds agree with field observations but also indicate that a significant increase in plume downwash occurs with other wind directions. Concentration distributions were calculated using several versions of the Industrial Source Complex (ISC) model. Model estimates of ground level concentrations were within a factor of three depending on wind direction. The model predictions are extremely sensitive to the ratio of plume height to vertical plume diffusion which is significantly influenced by a complex aerodynamic wake in the field. © 1990.
format Article in Journal/Newspaper
author Guenther, A
Lamb, B
Allwine, E
spellingShingle Guenther, A
Lamb, B
Allwine, E
Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
author_facet Guenther, A
Lamb, B
Allwine, E
author_sort Guenther, A
title Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
title_short Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
title_full Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
title_fullStr Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
title_full_unstemmed Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations
title_sort building wake dispersion at an arctic industrial site: field tracer observations and plume model evaluations
publisher eScholarship, University of California
publishDate 1990
url https://escholarship.org/uc/item/3b07d4vq
op_coverage 2329 - 2347
geographic Arctic
geographic_facet Arctic
genre Arctic
Prudhoe Bay
Tundra
Alaska
genre_facet Arctic
Prudhoe Bay
Tundra
Alaska
op_source Atmospheric Environment Part A, General Topics, vol 24, iss 9
op_relation qt3b07d4vq
https://escholarship.org/uc/item/3b07d4vq
op_rights CC-BY
op_rightsnorm CC-BY
_version_ 1766328978156552192