Inferring tipping points for ice flow in Antarctica from numerical simulations

The Antarctic ice cap is the largest ice mass on Earth. This cap is subject to instabilities generated by ongoing climate change. This thesis is part of the European H2020 project TiPACCs (Tipping Points in Antarctic Climate Components). The overall objective is to assess the likelihood of large and...

Full description

Bibliographic Details
Main Author: Urruty, Benoît
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université Grenoble Alpes 2020-., Olivier Gagliardini
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.univ-grenoble-alpes.fr/tel-04074261
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/document
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/file/URRUTY_2023_archivage.pdf
id ftccsdartic:oai:HAL:tel-04074261v2
record_format openpolar
spelling ftccsdartic:oai:HAL:tel-04074261v2 2023-12-17T10:22:12+01:00 Inferring tipping points for ice flow in Antarctica from numerical simulations Inférence des points de basculement pour l'écoulement de la glace en Antarctique à partir de simulations numériques Urruty, Benoît Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Université Grenoble Alpes 2020-. Olivier Gagliardini 2023-01-12 https://hal.univ-grenoble-alpes.fr/tel-04074261 https://hal.univ-grenoble-alpes.fr/tel-04074261v2/document https://hal.univ-grenoble-alpes.fr/tel-04074261v2/file/URRUTY_2023_archivage.pdf fr fre HAL CCSD NNT: 2023GRALI004 tel-04074261 https://hal.univ-grenoble-alpes.fr/tel-04074261 https://hal.univ-grenoble-alpes.fr/tel-04074261v2/document https://hal.univ-grenoble-alpes.fr/tel-04074261v2/file/URRUTY_2023_archivage.pdf info:eu-repo/semantics/OpenAccess https://hal.univ-grenoble-alpes.fr/tel-04074261 Mécanique des fluides [physics.class-ph]. Université Grenoble Alpes [2020-.], 2023. Français. ⟨NNT : 2023GRALI004⟩ Modelling Antarctica Flow Ecoulement Modélisation Antarctique [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] info:eu-repo/semantics/doctoralThesis Theses 2023 ftccsdartic 2023-11-18T23:48:26Z The Antarctic ice cap is the largest ice mass on Earth. This cap is subject to instabilities generated by ongoing climate change. This thesis is part of the European H2020 project TiPACCs (Tipping Points in Antarctic Climate Components). The overall objective is to assess the likelihood of large and abrupt changes in the near-future of the Antarctic ice sheet contribution to sea level, caused by Antarctic ice sheet tipping points. We need to determine the stability regime of the Antarctic ice sheet anchor lines and the existence of tipping points. We address the question of whether Antarctic grounding lines are currently undergoing irreversible retreat through instabilities such as MISI. Theoretical and numerical work has firmly established that marine-type ice sheet grounding lines can enter irreversible advance and retreat phases driven by marine ice sheet instability (MISI). Examples of such irreversible retreat have been found in several simulations of the past and future evolution of the Antarctic ice sheet.To this end, we are conducting a systematic analysis of the numerical stability of all Antarctic cap grounding lines in their present position using the Elmer/Ice ice flow model. Before perturbation experiments can be performed, an appropriate reference state is obtained in continuation of the recent model intercomparison experiment focused on ice sheet initialization for the Antarctic ice sheet, InitMIP-Antarctica (Seroussi, 2019). The inversion initialization methodology is used to ensure that the model reproduces the current surface flux for current ice thicknesses. In a second step, a study based on perturbation experiments is conducted to identify the stability regime of the Antarctic cap grounding lines in their current configurations. Stability is tested by applying a small but numerically significant melt disturbance below the floating platforms. We systematically show that ice sheet states can be obtained from grounding lines, ice geometry, and ice flow in close agreement with observations for ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctica Antarctique* Ice cap Ice Sheet Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Antarctic Misi ENVELOPE(26.683,26.683,66.617,66.617) The Antarctic
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language French
topic Modelling
Antarctica
Flow
Ecoulement
Modélisation
Antarctique
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
spellingShingle Modelling
Antarctica
Flow
Ecoulement
Modélisation
Antarctique
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Urruty, Benoît
Inferring tipping points for ice flow in Antarctica from numerical simulations
topic_facet Modelling
Antarctica
Flow
Ecoulement
Modélisation
Antarctique
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
description The Antarctic ice cap is the largest ice mass on Earth. This cap is subject to instabilities generated by ongoing climate change. This thesis is part of the European H2020 project TiPACCs (Tipping Points in Antarctic Climate Components). The overall objective is to assess the likelihood of large and abrupt changes in the near-future of the Antarctic ice sheet contribution to sea level, caused by Antarctic ice sheet tipping points. We need to determine the stability regime of the Antarctic ice sheet anchor lines and the existence of tipping points. We address the question of whether Antarctic grounding lines are currently undergoing irreversible retreat through instabilities such as MISI. Theoretical and numerical work has firmly established that marine-type ice sheet grounding lines can enter irreversible advance and retreat phases driven by marine ice sheet instability (MISI). Examples of such irreversible retreat have been found in several simulations of the past and future evolution of the Antarctic ice sheet.To this end, we are conducting a systematic analysis of the numerical stability of all Antarctic cap grounding lines in their present position using the Elmer/Ice ice flow model. Before perturbation experiments can be performed, an appropriate reference state is obtained in continuation of the recent model intercomparison experiment focused on ice sheet initialization for the Antarctic ice sheet, InitMIP-Antarctica (Seroussi, 2019). The inversion initialization methodology is used to ensure that the model reproduces the current surface flux for current ice thicknesses. In a second step, a study based on perturbation experiments is conducted to identify the stability regime of the Antarctic cap grounding lines in their current configurations. Stability is tested by applying a small but numerically significant melt disturbance below the floating platforms. We systematically show that ice sheet states can be obtained from grounding lines, ice geometry, and ice flow in close agreement with observations for ...
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Université Grenoble Alpes 2020-.
Olivier Gagliardini
format Doctoral or Postdoctoral Thesis
author Urruty, Benoît
author_facet Urruty, Benoît
author_sort Urruty, Benoît
title Inferring tipping points for ice flow in Antarctica from numerical simulations
title_short Inferring tipping points for ice flow in Antarctica from numerical simulations
title_full Inferring tipping points for ice flow in Antarctica from numerical simulations
title_fullStr Inferring tipping points for ice flow in Antarctica from numerical simulations
title_full_unstemmed Inferring tipping points for ice flow in Antarctica from numerical simulations
title_sort inferring tipping points for ice flow in antarctica from numerical simulations
publisher HAL CCSD
publishDate 2023
url https://hal.univ-grenoble-alpes.fr/tel-04074261
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/document
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/file/URRUTY_2023_archivage.pdf
long_lat ENVELOPE(26.683,26.683,66.617,66.617)
geographic Antarctic
Misi
The Antarctic
geographic_facet Antarctic
Misi
The Antarctic
genre Antarc*
Antarctic
Antarctica
Antarctique*
Ice cap
Ice Sheet
genre_facet Antarc*
Antarctic
Antarctica
Antarctique*
Ice cap
Ice Sheet
op_source https://hal.univ-grenoble-alpes.fr/tel-04074261
Mécanique des fluides [physics.class-ph]. Université Grenoble Alpes [2020-.], 2023. Français. ⟨NNT : 2023GRALI004⟩
op_relation NNT: 2023GRALI004
tel-04074261
https://hal.univ-grenoble-alpes.fr/tel-04074261
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/document
https://hal.univ-grenoble-alpes.fr/tel-04074261v2/file/URRUTY_2023_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1785544732478275584