Statistical downscaling and climate change in the coastal zone

Ocean wave climate has a significant impact on human activities, and its understanding is socioeconomically and environmentally important. In this thesis, we are interested in characterizing sea state parameters such as significant wave height (Hs) using statistical and deep learning methods. In par...

Full description

Bibliographic Details
Main Author: Obakrim, Said
Other Authors: Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes, Valérie Monbet, Pierre Ailliot
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://theses.hal.science/tel-03952800
https://theses.hal.science/tel-03952800/document
https://theses.hal.science/tel-03952800/file/OBAKRIM_Said.pdf
id ftccsdartic:oai:HAL:tel-03952800v1
record_format openpolar
spelling ftccsdartic:oai:HAL:tel-03952800v1 2024-02-27T08:43:36+00:00 Statistical downscaling and climate change in the coastal zone Downscaling statistique et changement climatique en zone côtière Obakrim, Said Institut de Recherche Mathématique de Rennes (IRMAR) Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) Université de Rennes Valérie Monbet Pierre Ailliot 2022-10-21 https://theses.hal.science/tel-03952800 https://theses.hal.science/tel-03952800/document https://theses.hal.science/tel-03952800/file/OBAKRIM_Said.pdf en eng HAL CCSD NNT: 2022REN1S060 tel-03952800 https://theses.hal.science/tel-03952800 https://theses.hal.science/tel-03952800/document https://theses.hal.science/tel-03952800/file/OBAKRIM_Said.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-03952800 Data Structures and Algorithms [cs.DS]. Université de Rennes, 2022. English. ⟨NNT : 2022REN1S060⟩ Downscaling Sea state Generalized Ridge Mixture of experts EM algorithm Deep learning Descente d'échelle Etat de mer Ridge généralisée Mélange d'experts Algorithme EM Apprentissage profond [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] info:eu-repo/semantics/doctoralThesis Theses 2022 ftccsdartic 2024-01-28T00:58:15Z Ocean wave climate has a significant impact on human activities, and its understanding is socioeconomically and environmentally important. In this thesis, we are interested in characterizing sea state parameters such as significant wave height (Hs) using statistical and deep learning methods. In particular, we are interested in modeling the relationship between North Atlantic wind conditions and sea state parameters at a location in the Bay of Biscay. Given the multidimensionality of the wind data and the time-lagged relationship between wind conditions and waves, we first propose a general framework to select the relevant covariates that influence the significant wave height. After the preprocessing step, a regression model based on weather types is proposed to model the relationship between wind and waves. The weather types are constructed using a clustering algorithm, and then, for each weather type, a Ridge regression is fitted between the wind conditions and the significant wave height. The model predicts Hs well; however, it has some limitations, namely: (i) Ridge regression does not take into account that the covariates have a spatial structure; and (ii) the weather types are constructed a priori using a clustering algorithm, and they are not evaluated based on the prediction of Hs. Therefore, we propose an expectation-maximization (EM) algorithm to estimate the parameters of the generalized Ridge regression with spatial covariates. Then, to account for (i) and (ii), we propose a mixture of generalized Ridge experts estimated using a variational EM algorithm. This model is used as a weather-types-based regression model, and its performance is better than that of the original model.Finally, the last part of this thesis is devoted to developing deep learning methods for sea state parameters prediction. Le climat des vagues océaniques a un impact significatif sur les activités humaines, et sa compréhension est importante sur le plan socio-économique et environnemental. Dans cette thèse, nous nous ... Doctoral or Postdoctoral Thesis North Atlantic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic Downscaling
Sea state
Generalized Ridge
Mixture of experts
EM algorithm
Deep learning
Descente d'échelle
Etat de mer
Ridge généralisée
Mélange d'experts
Algorithme EM
Apprentissage profond
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
spellingShingle Downscaling
Sea state
Generalized Ridge
Mixture of experts
EM algorithm
Deep learning
Descente d'échelle
Etat de mer
Ridge généralisée
Mélange d'experts
Algorithme EM
Apprentissage profond
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
Obakrim, Said
Statistical downscaling and climate change in the coastal zone
topic_facet Downscaling
Sea state
Generalized Ridge
Mixture of experts
EM algorithm
Deep learning
Descente d'échelle
Etat de mer
Ridge généralisée
Mélange d'experts
Algorithme EM
Apprentissage profond
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
description Ocean wave climate has a significant impact on human activities, and its understanding is socioeconomically and environmentally important. In this thesis, we are interested in characterizing sea state parameters such as significant wave height (Hs) using statistical and deep learning methods. In particular, we are interested in modeling the relationship between North Atlantic wind conditions and sea state parameters at a location in the Bay of Biscay. Given the multidimensionality of the wind data and the time-lagged relationship between wind conditions and waves, we first propose a general framework to select the relevant covariates that influence the significant wave height. After the preprocessing step, a regression model based on weather types is proposed to model the relationship between wind and waves. The weather types are constructed using a clustering algorithm, and then, for each weather type, a Ridge regression is fitted between the wind conditions and the significant wave height. The model predicts Hs well; however, it has some limitations, namely: (i) Ridge regression does not take into account that the covariates have a spatial structure; and (ii) the weather types are constructed a priori using a clustering algorithm, and they are not evaluated based on the prediction of Hs. Therefore, we propose an expectation-maximization (EM) algorithm to estimate the parameters of the generalized Ridge regression with spatial covariates. Then, to account for (i) and (ii), we propose a mixture of generalized Ridge experts estimated using a variational EM algorithm. This model is used as a weather-types-based regression model, and its performance is better than that of the original model.Finally, the last part of this thesis is devoted to developing deep learning methods for sea state parameters prediction. Le climat des vagues océaniques a un impact significatif sur les activités humaines, et sa compréhension est importante sur le plan socio-économique et environnemental. Dans cette thèse, nous nous ...
author2 Institut de Recherche Mathématique de Rennes (IRMAR)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université de Rennes
Valérie Monbet
Pierre Ailliot
format Doctoral or Postdoctoral Thesis
author Obakrim, Said
author_facet Obakrim, Said
author_sort Obakrim, Said
title Statistical downscaling and climate change in the coastal zone
title_short Statistical downscaling and climate change in the coastal zone
title_full Statistical downscaling and climate change in the coastal zone
title_fullStr Statistical downscaling and climate change in the coastal zone
title_full_unstemmed Statistical downscaling and climate change in the coastal zone
title_sort statistical downscaling and climate change in the coastal zone
publisher HAL CCSD
publishDate 2022
url https://theses.hal.science/tel-03952800
https://theses.hal.science/tel-03952800/document
https://theses.hal.science/tel-03952800/file/OBAKRIM_Said.pdf
genre North Atlantic
genre_facet North Atlantic
op_source https://theses.hal.science/tel-03952800
Data Structures and Algorithms [cs.DS]. Université de Rennes, 2022. English. ⟨NNT : 2022REN1S060⟩
op_relation NNT: 2022REN1S060
tel-03952800
https://theses.hal.science/tel-03952800
https://theses.hal.science/tel-03952800/document
https://theses.hal.science/tel-03952800/file/OBAKRIM_Said.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1792051608897454080