Exposure of Arctic seabirds to pollutants and the role played by individual migratory movements and non-breeding distribution
The Arctic, even far from intensive human activities, is contaminated by pollutants emitted at Northern mid-latitudes. Because of their physico-chemical characteristics, pollutants are transported over large distances through atmospheric or oceanic currents. Among them is mercury (Hg), a naturally o...
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://theses.hal.science/tel-03548704 https://theses.hal.science/tel-03548704/document https://theses.hal.science/tel-03548704/file/2020ALBERT154832.pdf |
Summary: | The Arctic, even far from intensive human activities, is contaminated by pollutants emitted at Northern mid-latitudes. Because of their physico-chemical characteristics, pollutants are transported over large distances through atmospheric or oceanic currents. Among them is mercury (Hg), a naturally occurring and non-essential trace element whose emissions increased since the 19th century because of human activities. This neurotoxic negatively impacts animals’ health and induces behavioral changes, reproduction issues and in the most extreme case, death. The marine environment is particularly sensitive to Hg, which incorporates the food chain (under is toxic and methylated form – MeHg) in which its concentration increases from one trophic level to the other (e.g. biomagnification process) and accumulates within organisms (e.g. bioaccumulation process). Hence, long-lived top predators like seabirds, found at the end of the food chain usually show some of the highest contamination to Hg. They are commonly and efficiently used as bio-indicators of the health of their environment. Most of the current knowledge about Hg contamination in Arctic seabirds focused on the breeding period during which Hg was found to spatially vary, with usually higher Hg concentrations in the Canadian Arctic. During this period, which represents a part of the year only, seabirds aggregate in colonies for reproduction where they are more easily accessible. However, at the end of this period, seabirds migrate to overwinter mostly in open seas, outside of the Arctic. A previous study on a little auk (Alle alle) population breeding in East Greenland found that Hg concentrations were higher during the non-breeding period than during the breeding period, with carryover effects on the following reproduction. In the present doctoral work, based on a multi-species and multi-colony approach, we studied winter Hg exposure and the role of seabird migration in their contamination to Hg at large spatial scale. We found a seasonality in Hg concentrations ... |
---|