Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understan...
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
HAL CCSD
2018
|
Subjects: | |
Online Access: | https://tel.archives-ouvertes.fr/tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782/document https://tel.archives-ouvertes.fr/tel-02181782/file/JIN_2018_diffusion.pdf |
id |
ftccsdartic:oai:HAL:tel-02181782v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:tel-02181782v1 2023-05-15T17:11:10+02:00 Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation Thermodynamique et cinétique de la formation de l'hydrate de méthane confiné dans un milieu nanoporeux : théorie et simulation moléculaire Jin, Dongliang Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy) Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes Benoît Coasne 2018-12-10 https://tel.archives-ouvertes.fr/tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782/document https://tel.archives-ouvertes.fr/tel-02181782/file/JIN_2018_diffusion.pdf en eng HAL CCSD NNT: 2018GREAY076 tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782/document https://tel.archives-ouvertes.fr/tel-02181782/file/JIN_2018_diffusion.pdf info:eu-repo/semantics/OpenAccess https://tel.archives-ouvertes.fr/tel-02181782 Other [cond-mat.other]. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAY076⟩ Nanoporous Media Clathrate hydrates and energy Nanoconfinement and surface forces Molecular Modeling Nanoconfinement et forces de surface Clathrates et Energie Milieux Nanoporeux Modélisation Moléculaire [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] info:eu-repo/semantics/doctoralThesis Theses 2018 ftccsdartic 2021-11-07T01:47:35Z Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understanding the thermodynamics and formation kinetics of methane hydrate confined in porous media is receiving a great deal of attention. In this thesis, we combine computer modeling and theoretical approaches to determine the thermodynamics and formation kinetics of methane hydrate confined in porous media. First, the state-of-the-art on the thermodynamics and formation kinetics of methane hydrate is presented. Second, different molecular simulation strategies, including free energy calculations using the Einstein molecule approach, the direct coexistence method, and the hyperparallel tempering technique, are used to assess the phase stability of bulk methane hydrate at various temperatures and pressures. Third, among these strategies, the direct coexistence method is chosen to determine the shift in melting point upon confinement in pores, ∆Tm=Tm^{pore}-Tm^{bulk} where Tm^{pore} and Tm^{bulk} are the melting temperatures of bulk and confined methane hydrate. We found that confinement decreases the melting temperature, Tm^{pore}≺Tm^{bulk}. The shift in melting temperature using the direct coexistence method is consistent with the Gibbs-Thompson equation which predicts that the shift in melting temperature linearly depends on the reciprocal of pore width, i.e., ∆Tm/Tm^{bulk}∼k{GB}/Dp. The quantitative validity of this classical thermodynamic equation to describe such confinement and surface effects is also addressed. The surface tensions of methane hydrate-substrate and liquid water-substrate interfaces are determined using molecular dynamics to quantitatively validate the Gibbs-Thompson equation. Molecular dynamics simulations are also performed to determine important thermodynamic properties of bulk and confined methane ... Doctoral or Postdoctoral Thesis Methane hydrate permafrost Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
Nanoporous Media Clathrate hydrates and energy Nanoconfinement and surface forces Molecular Modeling Nanoconfinement et forces de surface Clathrates et Energie Milieux Nanoporeux Modélisation Moléculaire [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] |
spellingShingle |
Nanoporous Media Clathrate hydrates and energy Nanoconfinement and surface forces Molecular Modeling Nanoconfinement et forces de surface Clathrates et Energie Milieux Nanoporeux Modélisation Moléculaire [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] Jin, Dongliang Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
topic_facet |
Nanoporous Media Clathrate hydrates and energy Nanoconfinement and surface forces Molecular Modeling Nanoconfinement et forces de surface Clathrates et Energie Milieux Nanoporeux Modélisation Moléculaire [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] |
description |
Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understanding the thermodynamics and formation kinetics of methane hydrate confined in porous media is receiving a great deal of attention. In this thesis, we combine computer modeling and theoretical approaches to determine the thermodynamics and formation kinetics of methane hydrate confined in porous media. First, the state-of-the-art on the thermodynamics and formation kinetics of methane hydrate is presented. Second, different molecular simulation strategies, including free energy calculations using the Einstein molecule approach, the direct coexistence method, and the hyperparallel tempering technique, are used to assess the phase stability of bulk methane hydrate at various temperatures and pressures. Third, among these strategies, the direct coexistence method is chosen to determine the shift in melting point upon confinement in pores, ∆Tm=Tm^{pore}-Tm^{bulk} where Tm^{pore} and Tm^{bulk} are the melting temperatures of bulk and confined methane hydrate. We found that confinement decreases the melting temperature, Tm^{pore}≺Tm^{bulk}. The shift in melting temperature using the direct coexistence method is consistent with the Gibbs-Thompson equation which predicts that the shift in melting temperature linearly depends on the reciprocal of pore width, i.e., ∆Tm/Tm^{bulk}∼k{GB}/Dp. The quantitative validity of this classical thermodynamic equation to describe such confinement and surface effects is also addressed. The surface tensions of methane hydrate-substrate and liquid water-substrate interfaces are determined using molecular dynamics to quantitatively validate the Gibbs-Thompson equation. Molecular dynamics simulations are also performed to determine important thermodynamic properties of bulk and confined methane ... |
author2 |
Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy) Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes Benoît Coasne |
format |
Doctoral or Postdoctoral Thesis |
author |
Jin, Dongliang |
author_facet |
Jin, Dongliang |
author_sort |
Jin, Dongliang |
title |
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
title_short |
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
title_full |
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
title_fullStr |
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
title_full_unstemmed |
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
title_sort |
thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation |
publisher |
HAL CCSD |
publishDate |
2018 |
url |
https://tel.archives-ouvertes.fr/tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782/document https://tel.archives-ouvertes.fr/tel-02181782/file/JIN_2018_diffusion.pdf |
genre |
Methane hydrate permafrost |
genre_facet |
Methane hydrate permafrost |
op_source |
https://tel.archives-ouvertes.fr/tel-02181782 Other [cond-mat.other]. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAY076⟩ |
op_relation |
NNT: 2018GREAY076 tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782 https://tel.archives-ouvertes.fr/tel-02181782/document https://tel.archives-ouvertes.fr/tel-02181782/file/JIN_2018_diffusion.pdf |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1766067995804696576 |