Global warming impact on polar krill : thermal tolerance and Hsp70 response
Polar regions are the first to be impacted by global warming. The physiological impact appraisal of a temperature increase over local species is critical to foresee future evolutions of polar ecosystems. Physiological consequences of temperature rises can affect organisms both in their hardness and...
Main Author: | |
---|---|
Other Authors: | , , , , , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | French |
Published: |
HAL CCSD
2014
|
Subjects: | |
Online Access: | https://theses.hal.science/tel-01151589 https://theses.hal.science/tel-01151589/document https://theses.hal.science/tel-01151589/file/these_archivage_2600204o.pdf |
Summary: | Polar regions are the first to be impacted by global warming. The physiological impact appraisal of a temperature increase over local species is critical to foresee future evolutions of polar ecosystems. Physiological consequences of temperature rises can affect organisms both in their hardness and survival. Krill stands as a key component for polar ecosystems and therefore constitutes the core diet of local predators. In such context, a thermal tolerance comparative analysis of three distinct polar krill species has been carried out: two Antarctic species Euphausia superba and Euphausia crystallorophias, and one Arctic species,Thysanoessa inermis. The determination of thermal tolerance (CT50) was conducted on these three species. E. superba and T. inermis analysis showed similar thermal tolerances, while E.crystallorophias CT50 was slightly lower. Five isoforms of Hsp70 have been characterized foreach species. Their gene expression has been monitored through temperature increases of their environment. This biomarkers monitoring allowed an estimation of the critical temperature at which cellular damages appear. Kinetic expressions vary for each species: a strong response was observed in Hsp70 T. inermis, whereas response is much lower in E.crystallorophias. For similar temperatures, E .superba does not provide any Hsp70 response,despite its high thermal tolerance. The accumulation of heat shock experiments on this species, in intensity and duration, still did not provide any Hsp70 response, although it confirmed its highly noticeable heat tolerance for an Antarctic organism. Les zones polaires sont les premières à subir les effets du réchauffement climatique.L'estimation de l‟impact physiologique d‟une augmentation de température sur les espèces de ces régions est capitale afin de prédire l'évolution des écosystèmes polaires. Les conséquences physiologiques de l‟augmentation des températures peuvent affecter les capacités de résistance et de survie des organismes. Le krill constitue un maillon clé des ... |
---|