Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1

International audience Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF-Chem 4.1.1 model, and two different descri...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Marelle, Louis, Thomas, Jennie, Ahmed, Shaddy, Tuite, Katie, Stutz, Jochen, Dommergue, Aurélien, Simpson, William, Frey, Markus, Baladima, Foteini
Other Authors: Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Department of Atmospheric and Oceanic Sciences Los Angeles (AOS), University of California Los Angeles (UCLA), University of California-University of California, Geophysical Institute Fairbanks, University of Alaska Fairbanks (UAF), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), This work also supported by the CNRS INSU LEFE-CHAT program under the grant Brom-Arc. We acknowledge support for William R. Simpson from the National Science Foundation grant ARC-1602716. This work was performed using HPC resources from GENCI-IDRIS (Grant A007017141) and the IPSL mesoscale computing center (CICLAD: Calcul Intensif pour le CLi-mat, l'Atmosphère et la Dynamique). We thank the WRF-Chem development and support teams at NOAA, NCAR, and PNNL for their support and collaborations. We acknowledge NCAR ACOM for providing the WRF-Chem chemical boundary conditions used in this study. We acknowledge use of the WRF-Chem pre-processor tools provid-ed by the Atmospheric Chemistry Ob-servations and Modeling Lab (ACOM) of NCAR. We acknowledge the NOAA Global Monitoring Laboratory Earth System Research Laboratories and the O-Buoy program for providing obser-vations used in this study.
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-03266425
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/document
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/file/2020MS002391-1.pdf
https://doi.org/10.1029/2020ms002391
id ftccsdartic:oai:HAL:insu-03266425v2
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Marelle, Louis
Thomas, Jennie,
Ahmed, Shaddy
Tuite, Katie
Stutz, Jochen
Dommergue, Aurélien
Simpson, William,
Frey, Markus,
Baladima, Foteini
Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF-Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events.
author2 Institut des Géosciences de l’Environnement (IGE)
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
TROPO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Department of Atmospheric and Oceanic Sciences Los Angeles (AOS)
University of California Los Angeles (UCLA)
University of California-University of California
Geophysical Institute Fairbanks
University of Alaska Fairbanks (UAF)
British Antarctic Survey (BAS)
Natural Environment Research Council (NERC)
This work also supported by the CNRS INSU LEFE-CHAT program under the grant Brom-Arc. We acknowledge support for William R. Simpson from the National Science Foundation grant ARC-1602716. This work was performed using HPC resources from GENCI-IDRIS (Grant A007017141) and the IPSL mesoscale computing center (CICLAD: Calcul Intensif pour le CLi-mat, l'Atmosphère et la Dynamique). We thank the WRF-Chem development and support teams at NOAA, NCAR, and PNNL for their support and collaborations. We acknowledge NCAR ACOM for providing the WRF-Chem chemical boundary conditions used in this study. We acknowledge use of the WRF-Chem pre-processor tools provid-ed by the Atmospheric Chemistry Ob-servations and Modeling Lab (ACOM) of NCAR. We acknowledge the NOAA Global Monitoring Laboratory Earth System Research Laboratories and the O-Buoy program for providing obser-vations used in this study.
format Article in Journal/Newspaper
author Marelle, Louis
Thomas, Jennie,
Ahmed, Shaddy
Tuite, Katie
Stutz, Jochen
Dommergue, Aurélien
Simpson, William,
Frey, Markus,
Baladima, Foteini
author_facet Marelle, Louis
Thomas, Jennie,
Ahmed, Shaddy
Tuite, Katie
Stutz, Jochen
Dommergue, Aurélien
Simpson, William,
Frey, Markus,
Baladima, Foteini
author_sort Marelle, Louis
title Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
title_short Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
title_full Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
title_fullStr Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
title_full_unstemmed Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1
title_sort implementation and impacts of surface and blowing snow sources of arctic bromine activation within wrf‐chem 4.1.1
publisher HAL CCSD
publishDate 2021
url https://hal-insu.archives-ouvertes.fr/insu-03266425
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/document
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/file/2020MS002391-1.pdf
https://doi.org/10.1029/2020ms002391
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_source ISSN: 1942-2466
Journal of Advances in Modeling Earth Systems
https://hal-insu.archives-ouvertes.fr/insu-03266425
Journal of Advances in Modeling Earth Systems, American Geophysical Union, 2021, 13 (8), pp.e2020MS002391. ⟨10.1029/2020ms002391⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2020ms002391
insu-03266425
https://hal-insu.archives-ouvertes.fr/insu-03266425
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/document
https://hal-insu.archives-ouvertes.fr/insu-03266425v2/file/2020MS002391-1.pdf
doi:10.1029/2020ms002391
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2020ms002391
container_title Journal of Advances in Modeling Earth Systems
container_volume 13
container_issue 8
_version_ 1766309037817724928
spelling ftccsdartic:oai:HAL:insu-03266425v2 2023-05-15T14:36:25+02:00 Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF‐Chem 4.1.1 Marelle, Louis Thomas, Jennie, Ahmed, Shaddy Tuite, Katie Stutz, Jochen Dommergue, Aurélien Simpson, William, Frey, Markus, Baladima, Foteini Institut des Géosciences de l’Environnement (IGE) Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) TROPO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS) Department of Atmospheric and Oceanic Sciences Los Angeles (AOS) University of California Los Angeles (UCLA) University of California-University of California Geophysical Institute Fairbanks University of Alaska Fairbanks (UAF) British Antarctic Survey (BAS) Natural Environment Research Council (NERC) This work also supported by the CNRS INSU LEFE-CHAT program under the grant Brom-Arc. We acknowledge support for William R. Simpson from the National Science Foundation grant ARC-1602716. This work was performed using HPC resources from GENCI-IDRIS (Grant A007017141) and the IPSL mesoscale computing center (CICLAD: Calcul Intensif pour le CLi-mat, l'Atmosphère et la Dynamique). We thank the WRF-Chem development and support teams at NOAA, NCAR, and PNNL for their support and collaborations. We acknowledge NCAR ACOM for providing the WRF-Chem chemical boundary conditions used in this study. We acknowledge use of the WRF-Chem pre-processor tools provid-ed by the Atmospheric Chemistry Ob-servations and Modeling Lab (ACOM) of NCAR. We acknowledge the NOAA Global Monitoring Laboratory Earth System Research Laboratories and the O-Buoy program for providing obser-vations used in this study. 2021 https://hal-insu.archives-ouvertes.fr/insu-03266425 https://hal-insu.archives-ouvertes.fr/insu-03266425v2/document https://hal-insu.archives-ouvertes.fr/insu-03266425v2/file/2020MS002391-1.pdf https://doi.org/10.1029/2020ms002391 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2020ms002391 insu-03266425 https://hal-insu.archives-ouvertes.fr/insu-03266425 https://hal-insu.archives-ouvertes.fr/insu-03266425v2/document https://hal-insu.archives-ouvertes.fr/insu-03266425v2/file/2020MS002391-1.pdf doi:10.1029/2020ms002391 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1942-2466 Journal of Advances in Modeling Earth Systems https://hal-insu.archives-ouvertes.fr/insu-03266425 Journal of Advances in Modeling Earth Systems, American Geophysical Union, 2021, 13 (8), pp.e2020MS002391. ⟨10.1029/2020ms002391⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2021 ftccsdartic https://doi.org/10.1029/2020ms002391 2022-01-09T00:14:37Z International audience Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF-Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events. Article in Journal/Newspaper Arctic Sea ice Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Journal of Advances in Modeling Earth Systems 13 8