Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment

International audience The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019. Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted for periods of a month to more than a year....

Full description

Bibliographic Details
Main Authors: Maillard, Julia, Ravetta, François, Raut, Jean-Christophe, Mariage, Vincent, Pelon, Jacques
Other Authors: TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-02942456
https://hal-insu.archives-ouvertes.fr/insu-02942456/document
https://hal-insu.archives-ouvertes.fr/insu-02942456/file/acp-2020-918.pdf
https://doi.org/10.5194/acp-2020-918
id ftccsdartic:oai:HAL:insu-02942456v1
record_format openpolar
spelling ftccsdartic:oai:HAL:insu-02942456v1 2023-05-15T14:58:37+02:00 Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment Maillard, Julia Ravetta, François Raut, Jean-Christophe Mariage, Vincent Pelon, Jacques TROPO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS) 2020 https://hal-insu.archives-ouvertes.fr/insu-02942456 https://hal-insu.archives-ouvertes.fr/insu-02942456/document https://hal-insu.archives-ouvertes.fr/insu-02942456/file/acp-2020-918.pdf https://doi.org/10.5194/acp-2020-918 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2020-918 insu-02942456 https://hal-insu.archives-ouvertes.fr/insu-02942456 https://hal-insu.archives-ouvertes.fr/insu-02942456/document https://hal-insu.archives-ouvertes.fr/insu-02942456/file/acp-2020-918.pdf doi:10.5194/acp-2020-918 info:eu-repo/semantics/OpenAccess ISSN: 1680-7367 EISSN: 1680-7375 Atmospheric Chemistry and Physics Discussions https://hal-insu.archives-ouvertes.fr/insu-02942456 Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2020, pp.(Under Review). ⟨10.5194/acp-2020-918⟩ [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2020 ftccsdartic https://doi.org/10.5194/acp-2020-918 2020-12-23T23:10:50Z International audience The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019. Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted for periods of a month to more than a year. Some of these buoys were equipped with 808 nm wavelength lidars which acquired a total of 1805 profiles over the course of the campaign. This IAOOS lidar dataset is exploited to establish a novel statistic of cloud cover and of the geometrical and optical characteristics of the lowest cloud layer. Cloud frequency is globally at 75%, 5 and above 85% from May to October. Single layers are thickest in October/November and thinnest in the summer. Meanwhile, their optical depth is maximum in October. On the whole, the cloud cover is very low, with the great majority of first layer bases beneath 120 m. In the shoulder seasons, surface temperatures are markedly warmer when the IAOOS profile contains at least one low cloud than when it does not. This temperature difference is statistically insignificant in the summer months. Indeed, summer clouds have a shortwave cooling effect which can reach −60 W m −2 and balance out their longwave warming 10 effect. Article in Journal/Newspaper Arctic Arctic Ocean North Pole Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Arctic Ocean North Pole
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Maillard, Julia
Ravetta, François
Raut, Jean-Christophe
Mariage, Vincent
Pelon, Jacques
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
topic_facet [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description International audience The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019. Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted for periods of a month to more than a year. Some of these buoys were equipped with 808 nm wavelength lidars which acquired a total of 1805 profiles over the course of the campaign. This IAOOS lidar dataset is exploited to establish a novel statistic of cloud cover and of the geometrical and optical characteristics of the lowest cloud layer. Cloud frequency is globally at 75%, 5 and above 85% from May to October. Single layers are thickest in October/November and thinnest in the summer. Meanwhile, their optical depth is maximum in October. On the whole, the cloud cover is very low, with the great majority of first layer bases beneath 120 m. In the shoulder seasons, surface temperatures are markedly warmer when the IAOOS profile contains at least one low cloud than when it does not. This temperature difference is statistically insignificant in the summer months. Indeed, summer clouds have a shortwave cooling effect which can reach −60 W m −2 and balance out their longwave warming 10 effect.
author2 TROPO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
format Article in Journal/Newspaper
author Maillard, Julia
Ravetta, François
Raut, Jean-Christophe
Mariage, Vincent
Pelon, Jacques
author_facet Maillard, Julia
Ravetta, François
Raut, Jean-Christophe
Mariage, Vincent
Pelon, Jacques
author_sort Maillard, Julia
title Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
title_short Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
title_full Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
title_fullStr Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
title_full_unstemmed Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
title_sort characterisation and surface radiative impact of arctic low clouds from the iaoos field experiment
publisher HAL CCSD
publishDate 2020
url https://hal-insu.archives-ouvertes.fr/insu-02942456
https://hal-insu.archives-ouvertes.fr/insu-02942456/document
https://hal-insu.archives-ouvertes.fr/insu-02942456/file/acp-2020-918.pdf
https://doi.org/10.5194/acp-2020-918
geographic Arctic
Arctic Ocean
North Pole
geographic_facet Arctic
Arctic Ocean
North Pole
genre Arctic
Arctic Ocean
North Pole
genre_facet Arctic
Arctic Ocean
North Pole
op_source ISSN: 1680-7367
EISSN: 1680-7375
Atmospheric Chemistry and Physics Discussions
https://hal-insu.archives-ouvertes.fr/insu-02942456
Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2020, pp.(Under Review). ⟨10.5194/acp-2020-918⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2020-918
insu-02942456
https://hal-insu.archives-ouvertes.fr/insu-02942456
https://hal-insu.archives-ouvertes.fr/insu-02942456/document
https://hal-insu.archives-ouvertes.fr/insu-02942456/file/acp-2020-918.pdf
doi:10.5194/acp-2020-918
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-2020-918
_version_ 1766330750377918464