On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution

International audience Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large...

Full description

Bibliographic Details
Published in:The Astrophysical Journal
Main Authors: Hyodo, Ryuki, Rosenblatt, Pascal, Genda, Hidenori, Charnoz, Sébastien
Other Authors: Institut de Physique du Globe de Paris (IPGP), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Earth-Life Science Institute Tokyo (ELSI), Tokyo Institute of Technology Tokyo (TITECH), Royal Observatory of Belgium Brussels (ROB), ACRI ST, Nice, France, Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-02914694
https://doi.org/10.3847/1538-4357/aa9984
id ftccsdartic:oai:HAL:insu-02914694v1
record_format openpolar
spelling ftccsdartic:oai:HAL:insu-02914694v1 2023-05-15T17:39:59+02:00 On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution Hyodo, Ryuki Rosenblatt, Pascal Genda, Hidenori Charnoz, Sébastien Institut de Physique du Globe de Paris (IPGP) Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS) Earth-Life Science Institute Tokyo (ELSI) Tokyo Institute of Technology Tokyo (TITECH) Royal Observatory of Belgium Brussels (ROB) ACRI ST, Nice, France Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP) 2017-12-19 https://hal-insu.archives-ouvertes.fr/insu-02914694 https://doi.org/10.3847/1538-4357/aa9984 en eng HAL CCSD American Astronomical Society info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/aa9984 insu-02914694 https://hal-insu.archives-ouvertes.fr/insu-02914694 doi:10.3847/1538-4357/aa9984 ISSN: 0004-637X EISSN: 1538-4357 The Astrophysical Journal https://hal-insu.archives-ouvertes.fr/insu-02914694 The Astrophysical Journal, American Astronomical Society, 2017, 851 (2), pp.122. ⟨10.3847/1538-4357/aa9984⟩ planets and satellites: composition planets and satellites: formation planets and satellites: individual (Phobos Deimos) [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2017 ftccsdartic https://doi.org/10.3847/1538-4357/aa9984 2021-11-21T00:39:52Z International audience Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J(2) term of its gravity field and particle-particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA's Martian Moons eXploration mission. Article in Journal/Newspaper North Pole Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) North Pole The Astrophysical Journal 851 2 122
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic planets and satellites: composition
planets and satellites: formation
planets and satellites: individual (Phobos
Deimos)
[SDU]Sciences of the Universe [physics]
spellingShingle planets and satellites: composition
planets and satellites: formation
planets and satellites: individual (Phobos
Deimos)
[SDU]Sciences of the Universe [physics]
Hyodo, Ryuki
Rosenblatt, Pascal
Genda, Hidenori
Charnoz, Sébastien
On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
topic_facet planets and satellites: composition
planets and satellites: formation
planets and satellites: individual (Phobos
Deimos)
[SDU]Sciences of the Universe [physics]
description International audience Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J(2) term of its gravity field and particle-particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA's Martian Moons eXploration mission.
author2 Institut de Physique du Globe de Paris (IPGP)
Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS)
Earth-Life Science Institute Tokyo (ELSI)
Tokyo Institute of Technology Tokyo (TITECH)
Royal Observatory of Belgium Brussels (ROB)
ACRI ST, Nice, France
Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
format Article in Journal/Newspaper
author Hyodo, Ryuki
Rosenblatt, Pascal
Genda, Hidenori
Charnoz, Sébastien
author_facet Hyodo, Ryuki
Rosenblatt, Pascal
Genda, Hidenori
Charnoz, Sébastien
author_sort Hyodo, Ryuki
title On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
title_short On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
title_full On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
title_fullStr On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
title_full_unstemmed On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
title_sort on the impact origin of phobos and deimos. ii. true polar wander and disk evolution
publisher HAL CCSD
publishDate 2017
url https://hal-insu.archives-ouvertes.fr/insu-02914694
https://doi.org/10.3847/1538-4357/aa9984
geographic North Pole
geographic_facet North Pole
genre North Pole
genre_facet North Pole
op_source ISSN: 0004-637X
EISSN: 1538-4357
The Astrophysical Journal
https://hal-insu.archives-ouvertes.fr/insu-02914694
The Astrophysical Journal, American Astronomical Society, 2017, 851 (2), pp.122. ⟨10.3847/1538-4357/aa9984⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/aa9984
insu-02914694
https://hal-insu.archives-ouvertes.fr/insu-02914694
doi:10.3847/1538-4357/aa9984
op_doi https://doi.org/10.3847/1538-4357/aa9984
container_title The Astrophysical Journal
container_volume 851
container_issue 2
container_start_page 122
_version_ 1766140750371749888