Simulated high-latitude soil thermal dynamics during the past 4 decades

International audience Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Peng, S., Ciais, Philippe, Krinner, Gerhard, Wang, Tao, Gouttevin, Isabelle, McGuire, A.D, Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., Macdougall, A, Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T.J, Delire, C., Hajima, T, Ji, D., Lettenmaier, D. P., Miller, P.A, Moore, J.C., Smith, B., Sueyoshi, T
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), University of Alaska Fairbanks (UAF), National Center for Atmospheric Research Boulder (NCAR), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office Exeter, Department of Civil and Environmental Engineering, University of Washington, University of Washington Seattle, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Lawrence Berkeley National Laboratory Berkeley (LBNL), University of Victoria Canada (UVIC), College of Global Change and Earth System Science (GCESS), Beijing Normal University (BNU), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Department of Physical Geography and Ecosystem Science Lund, Lund University Lund, ASU School of Earth and Space Exploration (SESE), Arizona State University Tempe (ASU), National Institute of Polar Research Tokyo (NiPR)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-01388162
https://hal-insu.archives-ouvertes.fr/insu-01388162/document
https://hal-insu.archives-ouvertes.fr/insu-01388162/file/CRYOSPHERE%20-%20Simulated%20high-latitude%20soil%20thermal%20dynamics%20during%20the%20past%204%20decades.pdf
https://doi.org/10.5194/tc-10-179-2016
id ftccsdartic:oai:HAL:insu-01388162v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic PERMAFROST
CLIMATE FORCING
HIGH LATITUDES CLIMATE
SOIL TEMPERATURE
CLIMATE MODEL
LAND SURFACE MODEL
[SDE]Environmental Sciences
spellingShingle PERMAFROST
CLIMATE FORCING
HIGH LATITUDES CLIMATE
SOIL TEMPERATURE
CLIMATE MODEL
LAND SURFACE MODEL
[SDE]Environmental Sciences
Peng, S.
Ciais, Philippe
Krinner, Gerhard
Wang, Tao
Gouttevin, Isabelle,
McGuire, A.D
Lawrence, D.
Burke, E.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, A
Rinke, A.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J
Delire, C.
Hajima, T
Ji, D.
Lettenmaier, D. P.
Miller, P.A
Moore, J.C.
Smith, B.
Sueyoshi, T
Simulated high-latitude soil thermal dynamics during the past 4 decades
topic_facet PERMAFROST
CLIMATE FORCING
HIGH LATITUDES CLIMATE
SOIL TEMPERATURE
CLIMATE MODEL
LAND SURFACE MODEL
[SDE]Environmental Sciences
description International audience Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr−1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr−1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr−1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface ...
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
ICOS-ATC (ICOS-ATC)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
University of Alaska Fairbanks (UAF)
National Center for Atmospheric Research Boulder (NCAR)
Met Office Hadley Centre for Climate Change (MOHC)
United Kingdom Met Office Exeter
Department of Civil and Environmental Engineering, University of Washington
University of Washington Seattle
Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Lawrence Berkeley National Laboratory Berkeley (LBNL)
University of Victoria Canada (UVIC)
College of Global Change and Earth System Science (GCESS)
Beijing Normal University (BNU)
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)
Research Institute for Global Change (RIGC)
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Department of Physical Geography and Ecosystem Science Lund
Lund University Lund
ASU School of Earth and Space Exploration (SESE)
Arizona State University Tempe (ASU)
National Institute of Polar Research Tokyo (NiPR)
format Article in Journal/Newspaper
author Peng, S.
Ciais, Philippe
Krinner, Gerhard
Wang, Tao
Gouttevin, Isabelle,
McGuire, A.D
Lawrence, D.
Burke, E.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, A
Rinke, A.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J
Delire, C.
Hajima, T
Ji, D.
Lettenmaier, D. P.
Miller, P.A
Moore, J.C.
Smith, B.
Sueyoshi, T
author_facet Peng, S.
Ciais, Philippe
Krinner, Gerhard
Wang, Tao
Gouttevin, Isabelle,
McGuire, A.D
Lawrence, D.
Burke, E.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, A
Rinke, A.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J
Delire, C.
Hajima, T
Ji, D.
Lettenmaier, D. P.
Miller, P.A
Moore, J.C.
Smith, B.
Sueyoshi, T
author_sort Peng, S.
title Simulated high-latitude soil thermal dynamics during the past 4 decades
title_short Simulated high-latitude soil thermal dynamics during the past 4 decades
title_full Simulated high-latitude soil thermal dynamics during the past 4 decades
title_fullStr Simulated high-latitude soil thermal dynamics during the past 4 decades
title_full_unstemmed Simulated high-latitude soil thermal dynamics during the past 4 decades
title_sort simulated high-latitude soil thermal dynamics during the past 4 decades
publisher HAL CCSD
publishDate 2016
url https://hal-insu.archives-ouvertes.fr/insu-01388162
https://hal-insu.archives-ouvertes.fr/insu-01388162/document
https://hal-insu.archives-ouvertes.fr/insu-01388162/file/CRYOSPHERE%20-%20Simulated%20high-latitude%20soil%20thermal%20dynamics%20during%20the%20past%204%20decades.pdf
https://doi.org/10.5194/tc-10-179-2016
genre Active layer thickness
permafrost
The Cryosphere
genre_facet Active layer thickness
permafrost
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal-insu.archives-ouvertes.fr/insu-01388162
The Cryosphere, Copernicus 2016, 10 (1), pp.179-192. ⟨10.5194/tc-10-179-2016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-179-2016
insu-01388162
https://hal-insu.archives-ouvertes.fr/insu-01388162
https://hal-insu.archives-ouvertes.fr/insu-01388162/document
https://hal-insu.archives-ouvertes.fr/insu-01388162/file/CRYOSPHERE%20-%20Simulated%20high-latitude%20soil%20thermal%20dynamics%20during%20the%20past%204%20decades.pdf
doi:10.5194/tc-10-179-2016
IRSTEA: PUB00048373
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-10-179-2016
container_title The Cryosphere
container_volume 10
container_issue 1
container_start_page 179
op_container_end_page 192
_version_ 1766334091549999104
spelling ftccsdartic:oai:HAL:insu-01388162v1 2023-05-15T13:03:19+02:00 Simulated high-latitude soil thermal dynamics during the past 4 decades Peng, S. Ciais, Philippe Krinner, Gerhard Wang, Tao Gouttevin, Isabelle, McGuire, A.D Lawrence, D. Burke, E. Chen, X. Decharme, B. Koven, C. Macdougall, A Rinke, A. Saito, K. Zhang, W. Alkama, R. Bohn, T.J Delire, C. Hajima, T Ji, D. Lettenmaier, D. P. Miller, P.A Moore, J.C. Smith, B. Sueyoshi, T Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) ICOS-ATC (ICOS-ATC) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) University of Alaska Fairbanks (UAF) National Center for Atmospheric Research Boulder (NCAR) Met Office Hadley Centre for Climate Change (MOHC) United Kingdom Met Office Exeter Department of Civil and Environmental Engineering, University of Washington University of Washington Seattle Groupe d'étude de l'atmosphère météorologique (CNRM-GAME) Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS) Lawrence Berkeley National Laboratory Berkeley (LBNL) University of Victoria Canada (UVIC) College of Global Change and Earth System Science (GCESS) Beijing Normal University (BNU) Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) Research Institute for Global Change (RIGC) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Department of Physical Geography and Ecosystem Science Lund Lund University Lund ASU School of Earth and Space Exploration (SESE) Arizona State University Tempe (ASU) National Institute of Polar Research Tokyo (NiPR) 2016-01 https://hal-insu.archives-ouvertes.fr/insu-01388162 https://hal-insu.archives-ouvertes.fr/insu-01388162/document https://hal-insu.archives-ouvertes.fr/insu-01388162/file/CRYOSPHERE%20-%20Simulated%20high-latitude%20soil%20thermal%20dynamics%20during%20the%20past%204%20decades.pdf https://doi.org/10.5194/tc-10-179-2016 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-179-2016 insu-01388162 https://hal-insu.archives-ouvertes.fr/insu-01388162 https://hal-insu.archives-ouvertes.fr/insu-01388162/document https://hal-insu.archives-ouvertes.fr/insu-01388162/file/CRYOSPHERE%20-%20Simulated%20high-latitude%20soil%20thermal%20dynamics%20during%20the%20past%204%20decades.pdf doi:10.5194/tc-10-179-2016 IRSTEA: PUB00048373 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal-insu.archives-ouvertes.fr/insu-01388162 The Cryosphere, Copernicus 2016, 10 (1), pp.179-192. ⟨10.5194/tc-10-179-2016⟩ PERMAFROST CLIMATE FORCING HIGH LATITUDES CLIMATE SOIL TEMPERATURE CLIMATE MODEL LAND SURFACE MODEL [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftccsdartic https://doi.org/10.5194/tc-10-179-2016 2021-12-19T02:42:41Z International audience Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr−1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr−1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr−1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface ... Article in Journal/Newspaper Active layer thickness permafrost The Cryosphere Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) The Cryosphere 10 1 179 192