How can we understand the global distribution of the solar cycle signal on the Earth's surface?

International audience To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analysed to characterize their spatial structure. The solar signal in the annual m...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Kodera, Kunihiko, Thiéblemont, Rémi, Yukimoto, Seiji, Matthes, Katja
Other Authors: Institute for Space-Earth Environmental Research Nagoya (ISEE), Nagoya University, STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA), Christian-Albrechts-Universität zu Kiel (CAU), Helmholtz Centre for Ocean Research Kiel (GEOMAR)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-01384165
https://hal-insu.archives-ouvertes.fr/insu-01384165/document
https://hal-insu.archives-ouvertes.fr/insu-01384165/file/acp-16-12925-2016.pdf
https://doi.org/10.5194/acp-16-12925-2016
id ftccsdartic:oai:HAL:insu-01384165v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]
spellingShingle [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]
Kodera, Kunihiko
Thiéblemont, Rémi
Yukimoto, Seiji
Matthes, Katja
How can we understand the global distribution of the solar cycle signal on the Earth's surface?
topic_facet [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]
description International audience To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analysed to characterize their spatial structure. The solar signal in the annual mean surface temperature is characterized by (i) mid-latitude warming and (ii) no overall tropical warming. The mid-latitude warming during solar maxima in both hemispheres is associated with a downward penetration of zonal mean zonal wind anomalies from the upper stratosphere during late winter. During the Northern Hemisphere winter this is manifested by a modulation of the polar-night jet, whereas in the Southern Hemisphere , the upper stratospheric subtropical jet plays the major role. Warming signals are particularly apparent over the Eurasian continent and ocean frontal zones, including a previously reported lagged response over the North Atlantic. In the tropics, local warming occurs over the Indian and central Pacific oceans during high solar activity. However, this warming is counterbalanced by cooling over the cold tongue sectors in the southeastern Pacific and the South Atlantic, and results in a very weak zonally averaged tropical mean signal. The cooling in the ocean basins is associated with stronger cross-equatorial winds resulting from a northward shift of the ascending branch of the Hadley circulation during solar maxima. To understand the complex processes involved in the solar signal transfer, results of an idealized middle atmosphere–ocean coupled model experiment on the impact of stratospheric zonal wind changes are compared with solar signals in observations. Model integration of 100 years of strong or weak stratospheric westerly jet condition in winter may exaggerate long-term ocean feedback. However, the role of ocean in the solar influence on the Earth's surface can be better seen. Although the momentum forcing differs from that of solar radiative forcing, the model results suggest that ...
author2 Institute for Space-Earth Environmental Research Nagoya (ISEE)
Nagoya University
STRATO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Meteorological Research Institute Tsukuba (MRI)
Japan Meteorological Agency (JMA)
Christian-Albrechts-Universität zu Kiel (CAU)
Helmholtz Centre for Ocean Research Kiel (GEOMAR)
format Article in Journal/Newspaper
author Kodera, Kunihiko
Thiéblemont, Rémi
Yukimoto, Seiji
Matthes, Katja
author_facet Kodera, Kunihiko
Thiéblemont, Rémi
Yukimoto, Seiji
Matthes, Katja
author_sort Kodera, Kunihiko
title How can we understand the global distribution of the solar cycle signal on the Earth's surface?
title_short How can we understand the global distribution of the solar cycle signal on the Earth's surface?
title_full How can we understand the global distribution of the solar cycle signal on the Earth's surface?
title_fullStr How can we understand the global distribution of the solar cycle signal on the Earth's surface?
title_full_unstemmed How can we understand the global distribution of the solar cycle signal on the Earth's surface?
title_sort how can we understand the global distribution of the solar cycle signal on the earth's surface?
publisher HAL CCSD
publishDate 2016
url https://hal-insu.archives-ouvertes.fr/insu-01384165
https://hal-insu.archives-ouvertes.fr/insu-01384165/document
https://hal-insu.archives-ouvertes.fr/insu-01384165/file/acp-16-12925-2016.pdf
https://doi.org/10.5194/acp-16-12925-2016
geographic Indian
Pacific
geographic_facet Indian
Pacific
genre North Atlantic
polar night
genre_facet North Atlantic
polar night
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://hal-insu.archives-ouvertes.fr/insu-01384165
Atmospheric Chemistry and Physics, European Geosciences Union, 2016, 16 (20), pp.12925 - 12944. ⟨10.5194/acp-16-12925-2016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-16-12925-2016
insu-01384165
https://hal-insu.archives-ouvertes.fr/insu-01384165
https://hal-insu.archives-ouvertes.fr/insu-01384165/document
https://hal-insu.archives-ouvertes.fr/insu-01384165/file/acp-16-12925-2016.pdf
doi:10.5194/acp-16-12925-2016
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-16-12925-2016
container_title Atmospheric Chemistry and Physics
container_volume 16
container_issue 20
container_start_page 12925
op_container_end_page 12944
_version_ 1766136502451961856
spelling ftccsdartic:oai:HAL:insu-01384165v1 2023-05-15T17:36:52+02:00 How can we understand the global distribution of the solar cycle signal on the Earth's surface? Kodera, Kunihiko Thiéblemont, Rémi Yukimoto, Seiji Matthes, Katja Institute for Space-Earth Environmental Research Nagoya (ISEE) Nagoya University STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Meteorological Research Institute Tsukuba (MRI) Japan Meteorological Agency (JMA) Christian-Albrechts-Universität zu Kiel (CAU) Helmholtz Centre for Ocean Research Kiel (GEOMAR) 2016 https://hal-insu.archives-ouvertes.fr/insu-01384165 https://hal-insu.archives-ouvertes.fr/insu-01384165/document https://hal-insu.archives-ouvertes.fr/insu-01384165/file/acp-16-12925-2016.pdf https://doi.org/10.5194/acp-16-12925-2016 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-16-12925-2016 insu-01384165 https://hal-insu.archives-ouvertes.fr/insu-01384165 https://hal-insu.archives-ouvertes.fr/insu-01384165/document https://hal-insu.archives-ouvertes.fr/insu-01384165/file/acp-16-12925-2016.pdf doi:10.5194/acp-16-12925-2016 info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal-insu.archives-ouvertes.fr/insu-01384165 Atmospheric Chemistry and Physics, European Geosciences Union, 2016, 16 (20), pp.12925 - 12944. ⟨10.5194/acp-16-12925-2016⟩ [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] info:eu-repo/semantics/article Journal articles 2016 ftccsdartic https://doi.org/10.5194/acp-16-12925-2016 2021-11-21T02:42:53Z International audience To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analysed to characterize their spatial structure. The solar signal in the annual mean surface temperature is characterized by (i) mid-latitude warming and (ii) no overall tropical warming. The mid-latitude warming during solar maxima in both hemispheres is associated with a downward penetration of zonal mean zonal wind anomalies from the upper stratosphere during late winter. During the Northern Hemisphere winter this is manifested by a modulation of the polar-night jet, whereas in the Southern Hemisphere , the upper stratospheric subtropical jet plays the major role. Warming signals are particularly apparent over the Eurasian continent and ocean frontal zones, including a previously reported lagged response over the North Atlantic. In the tropics, local warming occurs over the Indian and central Pacific oceans during high solar activity. However, this warming is counterbalanced by cooling over the cold tongue sectors in the southeastern Pacific and the South Atlantic, and results in a very weak zonally averaged tropical mean signal. The cooling in the ocean basins is associated with stronger cross-equatorial winds resulting from a northward shift of the ascending branch of the Hadley circulation during solar maxima. To understand the complex processes involved in the solar signal transfer, results of an idealized middle atmosphere–ocean coupled model experiment on the impact of stratospheric zonal wind changes are compared with solar signals in observations. Model integration of 100 years of strong or weak stratospheric westerly jet condition in winter may exaggerate long-term ocean feedback. However, the role of ocean in the solar influence on the Earth's surface can be better seen. Although the momentum forcing differs from that of solar radiative forcing, the model results suggest that ... Article in Journal/Newspaper North Atlantic polar night Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Indian Pacific Atmospheric Chemistry and Physics 16 20 12925 12944